BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33739154)

  • 1. Chronic perinatal hypoxia delays cardiac maturation in a mouse model for cyanotic congenital heart disease.
    Romanowicz J; Guerrelli D; Dhari Z; Mulvany C; Reilly M; Swift L; Vasandani N; Ramadan M; Leatherbury L; Ishibashi N; Posnack NG
    Am J Physiol Heart Circ Physiol; 2021 May; 320(5):H1873-H1886. PubMed ID: 33739154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases.
    Huang J; Li X; Li H; Su Z; Wang J; Zhang H
    Int J Clin Exp Pathol; 2015; 8(11):14221-7. PubMed ID: 26823736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-environment regulation of chamber-specific maturation during hypoxemic perinatal circulatory transition.
    Zhao Y; Kang X; Barsegian A; He J; Guzman A; Lau RP; Biniwale R; Wadhra M; Reemtsen B; Garg M; Halnon N; Quintero-Rivera F; Grody WW; ; Van Arsdell G; Nelson SF; Touma M
    J Mol Med (Berl); 2020 Jul; 98(7):1009-1020. PubMed ID: 32533200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.
    Hennig M; Fiedler S; Jux C; Thierfelder L; Drenckhahn JD
    J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28778941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gab1 Is Modulated by Chronic Hypoxia in Children with Cyanotic Congenital Heart Defect and Its Overexpression Reduces Apoptosis in Rat Neonatal Cardiomyocytes.
    Cherif M; Caputo M; Nakaoka Y; Angelini GD; Ghorbel MT
    Biomed Res Int; 2015; 2015():718492. PubMed ID: 26090437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of perinatal hypoxia on cardiac tolerance to acute ischaemia in adult male and female rats.
    Netuka I; Szarszoi O; Maly J; Besik J; Neckar J; Kolar F; Ostadalova I; Pirk J; Ostadal B
    Clin Exp Pharmacol Physiol; 2006 Aug; 33(8):714-9. PubMed ID: 16895545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients.
    Piccoli M; Conforti E; Varrica A; Ghiroldi A; Cirillo F; Resmini G; Pluchinotta F; Tettamanti G; Giamberti A; Frigiola A; Anastasia L
    Int J Cardiol; 2017 Mar; 230():6-13. PubMed ID: 28038803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic hypoxia: a model for cyanotic congenital heart defects.
    Corno AF; Milano G; Samaja M; Tozzi P; von Segesser LK
    J Thorac Cardiovasc Surg; 2002 Jul; 124(1):105-12. PubMed ID: 12091815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac performance after deep hypothermic circulatory arrest in chronically cyanotic neonatal lambs.
    Nagashima M; Nollert G; Stock U; Sperling J; Hatsuoka S; Shum-Tim D; Takeuchi K; Nedder A; Mayer JE
    J Thorac Cardiovasc Surg; 2000 Aug; 120(2):238-46. PubMed ID: 10917937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.
    Tong W; Xue Q; Li Y; Zhang L
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H2113-21. PubMed ID: 21856922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-induced inhibition of mTORC1 activity in the developing lung: a possible mechanism for the developmental programming of pulmonary hypertension.
    Mundo W; Wolfson G; Moore LG; Houck JA; Park D; Julian CG
    Am J Physiol Heart Circ Physiol; 2021 Mar; 320(3):H980-H990. PubMed ID: 33416457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hypoxia-inducible factor HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects.
    Qing M; Görlach A; Schumacher K; Wöltje M; Vazquez-Jimenez JF; Hess J; Seghaye MC
    Basic Res Cardiol; 2007 May; 102(3):224-32. PubMed ID: 17268888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypoxia during early organogenesis on cardiac activity and noradrenergic regulation in the postnatal period.
    Graf AV; Maslova MV; Maklakova AS; Sokolova NA; Kudryashova NY; Krushinskaya YV; Goncharenko EN; Neverova ME; Fidelina OV
    Bull Exp Biol Med; 2006 Nov; 142(5):543-5. PubMed ID: 17415485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-dependent effect of perinatal hypoxia on cardiac tolerance to oxygen deprivation in adults.
    Ostadal B; Ostadalova I; Szarszoi O; Netuka I; Olejnickova V; Hlavackova M
    Can J Physiol Pharmacol; 2021 Jan; 99(1):1-8. PubMed ID: 32687731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the effects of in utero exposure to valproic acid on murine fetal heart development.
    Philbrook NA; Nikolovska A; Maciver RD; Belanger CL; Winn LM
    Birth Defects Res; 2019 Nov; 111(19):1551-1560. PubMed ID: 31661193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat.
    Fujii Y; Ishino K; Tomii T; Kanamitsu H; Mitsui H; Sano S
    Gen Thorac Cardiovasc Surg; 2010 Apr; 58(4):174-81. PubMed ID: 20401710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypoxia and its relationship with apoptosis, stem cells, and angiogenesis on the thymus of children with congenital heart defects: a morphological and immunohistochemical study.
    Ceyran AB; Şenol S; Güzelmeriç F; Tunçer E; Tongut A; Özbek B; Şavluk Ö; Aydın A; Ceyran H
    Int J Clin Exp Pathol; 2015; 8(7):8038-47. PubMed ID: 26339370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences.
    Tintu A; Rouwet E; Verlohren S; Brinkmann J; Ahmad S; Crispi F; van Bilsen M; Carmeliet P; Staff AC; Tjwa M; Cetin I; Gratacos E; Hernandez-Andrade E; Hofstra L; Jacobs M; Lamers WH; Morano I; Safak E; Ahmed A; le Noble F
    PLoS One; 2009; 4(4):e5155. PubMed ID: 19357774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic cyanosis and vascular function: implications for patients with cyanotic congenital heart disease.
    Cordina RL; Celermajer DS
    Cardiol Young; 2010 Jun; 20(3):242-53. PubMed ID: 20416139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of fetal development on neurocognitive performance of adolescents with cyanotic and acyanotic congenital heart disease.
    Matos SM; Sarmento S; Moreira S; Pereira MM; Quintas J; Peixoto B; Areias JC; Areias ME
    Congenit Heart Dis; 2014; 9(5):373-81. PubMed ID: 24298977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.