BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33739835)

  • 1. Effect of Protein Corona on Nanoparticle-Lipid Membrane Binding: The Binding Strength and Dynamics.
    Lee H
    Langmuir; 2021 Mar; 37(12):3751-3760. PubMed ID: 33739835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Nanoparticle Electrostatics and Protein-Protein Interactions on Corona Formation: Conformation and Hydrodynamics.
    Lee H
    Small; 2020 Mar; 16(10):e1906598. PubMed ID: 32022403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of protein corona from nanoparticles under intracellular acidic conditions: effect of protonation on nanoparticle-protein and protein-protein interactions.
    Lee H
    Phys Chem Chem Phys; 2024 Jan; 26(5):4000-4010. PubMed ID: 38224098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Polystyrene Nanoparticles with Supported Lipid Bilayers: Impact of Nanoparticle Size and Protein Corona.
    Meesaragandla B; Blessing DO; Karanth S; Rong A; Geist N; Delcea M
    Macromol Biosci; 2023 Aug; 23(8):e2200464. PubMed ID: 36707930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in protein distribution, conformation, and dynamics in hard and soft coronas: dependence on protein and particle electrostatics.
    Lee H
    Phys Chem Chem Phys; 2023 Mar; 25(10):7496-7507. PubMed ID: 36853334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics.
    Woo SY; Lee H
    Sci Rep; 2016 Mar; 6():22299. PubMed ID: 26926570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Atomistic Molecular Dynamics Study of Titanium Dioxide Adhesion to Lipid Bilayers.
    Aranha MP; Mukherjee D; Petridis L; Khomami B
    Langmuir; 2020 Feb; 36(4):1043-1052. PubMed ID: 31944772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.
    Cheng SY; Chou G; Buie C; Vaughn MW; Compton C; Cheng KH
    Chem Phys Lipids; 2016 Mar; 196():33-51. PubMed ID: 26827904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces.
    Melby ES; Allen C; Foreman-Ortiz IU; Caudill ER; Kuech TR; Vartanian AM; Zhang X; Murphy CJ; Hernandez R; Pedersen JA
    Langmuir; 2018 Sep; 34(36):10793-10805. PubMed ID: 30102857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models.
    Das M; Dahal U; Mesele O; Liang D; Cui Q
    J Phys Chem B; 2019 Dec; 123(49):10547-10561. PubMed ID: 31675790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers.
    Qian Z; Jia Y; Wei G
    J Diabetes Res; 2016; 2016():1749196. PubMed ID: 26649316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of anionic asymmetric bilayers from atomistic simulations.
    Jiang W; Lin YC; Luo YL
    J Chem Phys; 2021 Jun; 154(22):224701. PubMed ID: 34241213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.
    Lockhart C; Klimov DK
    Biochim Biophys Acta; 2016 Jun; 1858(6):1118-28. PubMed ID: 26947182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes.
    Heikkilä E; Martinez-Seara H; Gurtovenko AA; Vattulainen I; Akola J
    Biochim Biophys Acta; 2014 Nov; 1838(11):2852-60. PubMed ID: 25109937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry.
    Ou L; Corradi V; Tieleman DP; Liang Q
    J Phys Chem B; 2020 Jun; 124(22):4466-4475. PubMed ID: 32392064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies.
    Tian J; Nickels J; Katsaras J; Cheng X
    J Phys Chem B; 2016 Aug; 120(33):8438-48. PubMed ID: 27121138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes.
    Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA
    ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.
    Reid KA; Davis CM; Dyer RB; Kindt JT
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.