These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 33739921)
1. Zero-Shot Super-Resolution With a Physically-Motivated Downsampling Kernel for Endomicroscopy. Szczotka AB; Shakir DI; Clarkson MJ; Pereira SP; Vercauteren T IEEE Trans Med Imaging; 2021 Jul; 40(7):1863-1874. PubMed ID: 33739921 [TBL] [Abstract][Full Text] [Related]
2. Contrastive Adversarial Learning for Endomicroscopy Imaging Super-Resolution. Zhang C; Gu Y; Yang GZ IEEE J Biomed Health Inform; 2023 Aug; 27(8):3994-4005. PubMed ID: 37171919 [TBL] [Abstract][Full Text] [Related]
3. Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy. Ravì D; Szczotka AB; Pereira SP; Vercauteren T Med Image Anal; 2019 Apr; 53():123-131. PubMed ID: 30769327 [TBL] [Abstract][Full Text] [Related]
4. Learning from irregularly sampled data for endomicroscopy super-resolution: a comparative study of sparse and dense approaches. Szczotka AB; Shakir DI; Ravì D; Clarkson MJ; Pereira SP; Vercauteren T Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1167-1175. PubMed ID: 32415459 [TBL] [Abstract][Full Text] [Related]
5. Semi-supervised super-resolution of diffusion-weighted images based on multiple references. Guo H; Wang L; Gu Y; Zhang J; Zhu Y NMR Biomed; 2023 Aug; 36(8):e4919. PubMed ID: 36908072 [TBL] [Abstract][Full Text] [Related]
6. Complex "zero-shot" super-resolution reconstruction algorithm for THz imaging. Wang Y; Qi F; Wang J Appl Opt; 2022 Jul; 61(20):5831-5837. PubMed ID: 36255819 [TBL] [Abstract][Full Text] [Related]
7. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Ravì D; Szczotka AB; Shakir DI; Pereira SP; Vercauteren T Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):917-924. PubMed ID: 29687176 [TBL] [Abstract][Full Text] [Related]
8. PET image super-resolution using generative adversarial networks. Song TA; Chowdhury SR; Yang F; Dutta J Neural Netw; 2020 May; 125():83-91. PubMed ID: 32078963 [TBL] [Abstract][Full Text] [Related]
9. Super resolution-based methodology for self-supervised segmentation of microscopy images. Bommanapally V; Abeyrathna D; Chundi P; Subramaniam M Front Microbiol; 2024; 15():1255850. PubMed ID: 38533330 [TBL] [Abstract][Full Text] [Related]
10. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
11. Learning Many-to-Many Mapping for Unpaired Real-World Image Super-Resolution and Downscaling. Sun W; Chen Z IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):9874-9889. PubMed ID: 39012753 [TBL] [Abstract][Full Text] [Related]
12. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network. Du X; Qu X; He Y; Guo D Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29509666 [TBL] [Abstract][Full Text] [Related]
13. A hybrid convolutional neural network for super-resolution reconstruction of MR images. Zheng Y; Zhen B; Chen A; Qi F; Hao X; Qiu B Med Phys; 2020 Jul; 47(7):3013-3022. PubMed ID: 32201956 [TBL] [Abstract][Full Text] [Related]
14. CT kernel conversions using convolutional neural net for super-resolution with simplified squeeze-and-excitation blocks and progressive learning among smooth and sharp kernels. Eun DI; Woo I; Park B; Kim N; Lee A SM; Seo JB Comput Methods Programs Biomed; 2020 Nov; 196():105615. PubMed ID: 32599340 [TBL] [Abstract][Full Text] [Related]
15. Technical Note: Real-time 3D MRI in the presence of motion for MRI-guided radiotherapy: 3D Dynamic keyhole imaging with super-resolution. Kim T; Park JC; Gach HM; Chun J; Mutic S Med Phys; 2019 Oct; 46(10):4631-4638. PubMed ID: 31376292 [TBL] [Abstract][Full Text] [Related]
16. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
17. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging. Li Y; Matej S; Metzler SD Med Phys; 2014 Dec; 41(12):121912. PubMed ID: 25471972 [TBL] [Abstract][Full Text] [Related]
18. Super-Resolution PET Imaging Using Convolutional Neural Networks. Song TA; Chowdhury SR; Yang F; Dutta J IEEE Trans Comput Imaging; 2020; 6():518-528. PubMed ID: 32055649 [TBL] [Abstract][Full Text] [Related]
19. Single image super-resolution via Image Quality Assessment-Guided Deep Learning Network. Xiong Z; Lin M; Lin Z; Sun T; Yang G; Wang Z PLoS One; 2020; 15(10):e0241313. PubMed ID: 33119656 [TBL] [Abstract][Full Text] [Related]
20. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending. Hofmann C; Sawall S; Knaup M; Kachelrieß M Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]