BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 33740140)

  • 1. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors.
    Tran HV; Piro B
    Mikrochim Acta; 2021 Mar; 188(4):128. PubMed ID: 33740140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing.
    Wang J; Wen J; Yan H
    Chem Asian J; 2021 Jan; 16(2):114-128. PubMed ID: 33289286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of electrochemical biosensors for simultaneous multiplex detection of microRNA for breast cancer screening.
    Pimalai D; Putnin T; Waiwinya W; Chotsuwan C; Aroonyadet N; Japrung D
    Mikrochim Acta; 2021 Sep; 188(10):329. PubMed ID: 34495394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular methods in electrochemical microRNA detection.
    Gillespie P; Ladame S; O'Hare D
    Analyst; 2018 Dec; 144(1):114-129. PubMed ID: 30375585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA.
    Bai YY; Wu Z; Xu CM; Zhang L; Feng J; Pang DW; Zhang ZL
    Anal Chem; 2020 Jan; 92(1):853-858. PubMed ID: 31755700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New trends in the development of electrochemical biosensors for the quantification of microRNAs.
    Mujica ML; Gallay PA; Perrachione F; Montemerlo AE; Tamborelli LA; Vaschetti VM; Reartes DF; Bollo S; Rodríguez MC; Dalmasso PR; Rubianes MD; Rivas GA
    J Pharm Biomed Anal; 2020 Sep; 189():113478. PubMed ID: 32768875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays.
    Wang YH; He LL; Huang KJ; Chen YX; Wang SY; Liu ZH; Li D
    Analyst; 2019 May; 144(9):2849-2866. PubMed ID: 30916675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive electrochemical detection of microRNA-21 based on propylamine-functionalized mesoporous silica with glucometer readout.
    Deng K; Zhang Y; Tong X
    Anal Bioanal Chem; 2018 Mar; 410(7):1863-1871. PubMed ID: 29353431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification.
    Xia N; Liu K; Zhou Y; Li Y; Yi X
    Int J Nanomedicine; 2017; 12():5013-5022. PubMed ID: 28761341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on the electrochemical biosensors for determination of microRNAs.
    Hamidi-Asl E; Palchetti I; Hasheminejad E; Mascini M
    Talanta; 2013 Oct; 115():74-83. PubMed ID: 24054564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in miRNA Detection Using Graphene Material-Based Biosensors.
    Zhang C; Miao P; Sun M; Yan M; Liu H
    Small; 2019 Sep; 15(38):e1901867. PubMed ID: 31379135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.
    Xia N; Zhang Y; Wei X; Huang Y; Liu L
    Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical sensing of microRNAs: avenues and paradigms.
    Labib M; Berezovski MV
    Biosens Bioelectron; 2015 Jun; 68():83-94. PubMed ID: 25562735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.
    Chang Y; Zhuo Y; Chai Y; Yuan R
    Anal Chem; 2017 Aug; 89(16):8266-8272. PubMed ID: 28727412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator.
    Zhao LL; Pan HY; Zhang XX; Zhou YL
    Anal Chim Acta; 2020 Jun; 1116():62-69. PubMed ID: 32389190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors.
    Aziz NB; Mahmudunnabi RG; Umer M; Sharma S; Rashid MA; Alhamhoom Y; Shim YB; Salomon C; Shiddiky MJA
    Analyst; 2020 Mar; 145(6):2038-2057. PubMed ID: 32016203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Electrochemical Biosensor Technologies for the Detection of Nucleic Acid Breast Cancer Biomarkers.
    Chiorcea-Paquim AM
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials in electrochemical nanobiosensors of miRNAs.
    Mousazadeh M; Daneshpour M; Rafizadeh Tafti S; Shoaie N; Jahanpeyma F; Mousazadeh F; Khosravi F; Khashayar P; Azimzadeh M; Mostafavi E
    Nanoscale; 2024 Mar; 16(10):4974-5013. PubMed ID: 38357721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers.
    Hong CY; Chen X; Liu T; Li J; Yang HH; Chen JH; Chen GN
    Biosens Bioelectron; 2013 Dec; 50():132-6. PubMed ID: 23850778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers.
    Wang Y; MacLachlan E; Nguyen BK; Fu G; Peng C; Chen JI
    Analyst; 2015 Feb; 140(4):1140-8. PubMed ID: 25503277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.