These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Current Advances in Computational Approaches for Drug Discovery- Part II. Gupta AK Curr Top Med Chem; 2018; 18(27):2267. PubMed ID: 30767732 [No Abstract] [Full Text] [Related]
5. PubChem 2019 update: improved access to chemical data. Kim S; Chen J; Cheng T; Gindulyte A; He J; He S; Li Q; Shoemaker BA; Thiessen PA; Yu B; Zaslavsky L; Zhang J; Bolton EE Nucleic Acids Res; 2019 Jan; 47(D1):D1102-D1109. PubMed ID: 30371825 [TBL] [Abstract][Full Text] [Related]
6. Cellular target engagement: a new paradigm in drug discovery. Babic I; Kesari S; Nurmemmedov E Future Med Chem; 2018 Jul; 10(14):1641-1644. PubMed ID: 29957028 [No Abstract] [Full Text] [Related]
7. Learning from PAINful lessons. Erlanson DA J Med Chem; 2015 Mar; 58(5):2088-90. PubMed ID: 25710486 [TBL] [Abstract][Full Text] [Related]
8. DNA-encoded chemical libraries: a tool for drug discovery and for chemical biology. Scheuermann J; Neri D Chembiochem; 2010 May; 11(7):931-7. PubMed ID: 20391457 [No Abstract] [Full Text] [Related]
9. Small molecules and their role in effective preclinical target validation. Clegg MA; Tomkinson NC; Prinjha RK; Humphreys PG Future Med Chem; 2017 Sep; 9(14):1579-1582. PubMed ID: 28828889 [No Abstract] [Full Text] [Related]
10. Expanding the medicinally relevant chemical space with compound libraries. López-Vallejo F; Giulianotti MA; Houghten RA; Medina-Franco JL Drug Discov Today; 2012 Jul; 17(13-14):718-26. PubMed ID: 22515962 [TBL] [Abstract][Full Text] [Related]
11. The why and how of phenotypic small-molecule screens. Eggert US Nat Chem Biol; 2013 Apr; 9(4):206-9. PubMed ID: 23508174 [No Abstract] [Full Text] [Related]
12. Biologically active metabolites in drug discovery. Sun S; Wesolowski SS Bioorg Med Chem Lett; 2021 Sep; 48():128255. PubMed ID: 34245850 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in identifying protein targets in drug discovery. Ha J; Park H; Park J; Park SB Cell Chem Biol; 2021 Mar; 28(3):394-423. PubMed ID: 33357463 [TBL] [Abstract][Full Text] [Related]
14. Biodiversity of small molecules--a new perspective in screening set selection. Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345 [TBL] [Abstract][Full Text] [Related]
15. Privileged scaffolds for library design and drug discovery. Welsch ME; Snyder SA; Stockwell BR Curr Opin Chem Biol; 2010 Jun; 14(3):347-61. PubMed ID: 20303320 [TBL] [Abstract][Full Text] [Related]
16. Efficient hit and lead compound evaluation strategy based on off-rate screening by surface plasmon resonance. Liu L J Med Chem; 2014 Apr; 57(7):2843-4. PubMed ID: 24654838 [TBL] [Abstract][Full Text] [Related]
17. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Zuegg J; Cooper MA Curr Top Med Chem; 2012; 12(14):1500-13. PubMed ID: 22827520 [TBL] [Abstract][Full Text] [Related]
18. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy. Temesi G; Bolgár B; Arany A; Szalai C; Antal P; Mátyus P Future Med Chem; 2014 Apr; 6(5):563-75. PubMed ID: 24649958 [TBL] [Abstract][Full Text] [Related]
19. Knowledge from Small-Molecule Screening and Profiling Data. Green DV; Clemons PA J Biomol Screen; 2014 Jun; 19(5):611-3. PubMed ID: 24842910 [No Abstract] [Full Text] [Related]
20. Editorial: recent trends in library design and virtual screening in medicinal chemistry and drug discovery. Kumar BV; Sriram D; Yogeeswari P Curr Top Med Chem; 2014; 14(16):1865. PubMed ID: 25262807 [No Abstract] [Full Text] [Related] [Next] [New Search]