These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33740581)

  • 1. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control.
    Chomienne L; Blouin J; Bringoux L
    J Neurophysiol; 2021 Jan; 125(1):154-165. PubMed ID: 33174494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive representation of dynamics during learning of a motor task.
    Shadmehr R; Mussa-Ivaldi FA
    J Neurosci; 1994 May; 14(5 Pt 2):3208-24. PubMed ID: 8182467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation.
    Coltman SK; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):388-399. PubMed ID: 32639925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating objects with internal degrees of freedom: evidence for model-based control.
    Dingwell JB; Mah CD; Mussa-Ivaldi FA
    J Neurophysiol; 2002 Jul; 88(1):222-35. PubMed ID: 12091548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence, time, or state representation: how does the motor control system adapt to variable environments?
    Karniel A; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of hand equilibrium trajectories in multi-joint arm movements.
    Flash T
    Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural force fields of the human arm and their role in generating multijoint movements.
    Shadmehr R; Mussa-Ivaldi FA; Bizzi E
    J Neurosci; 1993 Jan; 13(1):45-62. PubMed ID: 8423483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational nature of human adaptive control during learning of reaching movements in force fields.
    Bhushan N; Shadmehr R
    Biol Cybern; 1999 Jul; 81(1):39-60. PubMed ID: 10434390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trial-by-trial adaptation of movements during mental practice under force field.
    Anwar MN; Khan SH
    Comput Math Methods Med; 2013; 2013():109497. PubMed ID: 23737857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.