BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33740589)

  • 1. The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naïve and caffeine-adapted subjects.
    Zulkifly MFM; Merkohitaj O; Paulus W; Brockmöller J
    Psychoneuroendocrinology; 2021 May; 127():105201. PubMed ID: 33740589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confounding effects of caffeine on neuroplasticity induced by transcranial alternating current stimulation and paired associative stimulation.
    Zulkifly MFM; Merkohitaj O; Brockmöller J; Paulus W
    Clin Neurophysiol; 2021 Jun; 132(6):1367-1379. PubMed ID: 33762129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability.
    Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S
    Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isometric agonist and antagonist muscle activation interacts differently with 140-Hz transcranial alternating current stimulation aftereffects at different intensities.
    Shorafa Y; Halawa I; Hewitt M; Nitsche MA; Antal A; Paulus W
    J Neurophysiol; 2021 Jul; 126(1):340-348. PubMed ID: 34191638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols.
    Therrien-Blanchet JM; Ferland MC; Badri M; Rousseau MA; Merabtine A; Boucher E; Hofmann LH; Lepage JF; Théoret H
    Cereb Cortex; 2023 May; 33(11):7061-7075. PubMed ID: 36749004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability.
    Nakazono H; Ogata K; Kuroda T; Tobimatsu S
    PLoS One; 2016; 11(9):e0162521. PubMed ID: 27607431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function.
    Naro A; Bramanti A; Leo A; Manuli A; Sciarrone F; Russo M; Bramanti P; Calabrò RS
    Brain Struct Funct; 2017 Aug; 222(6):2891-2906. PubMed ID: 28064346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex.
    Pozdniakov I; Vorobiova AN; Galli G; Rossi S; Feurra M
    Sci Rep; 2021 Feb; 11(1):3854. PubMed ID: 33594133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar rTMS and PAS effectively induce cerebellar plasticity.
    Pauly MG; Steinmeier A; Bolte C; Hamami F; Tzvi E; Münchau A; Bäumer T; Weissbach A
    Sci Rep; 2021 Feb; 11(1):3070. PubMed ID: 33542291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults.
    Fresnoza S; Christova M; Feil T; Gallasch E; Körner C; Zimmer U; Ischebeck A
    Exp Brain Res; 2018 Oct; 236(10):2573-2588. PubMed ID: 29943239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation.
    Dyke K; Kim S; Jackson GM; Jackson SR
    Brain Stimul; 2016; 9(6):819-825. PubMed ID: 27387569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A specific phase of transcranial alternating current stimulation at the β frequency boosts repetitive paired-pulse TMS-induced plasticity.
    Nakazono H; Ogata K; Takeda A; Yamada E; Oka S; Tobimatsu S
    Sci Rep; 2021 Jun; 11(1):13179. PubMed ID: 34162993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability.
    Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT
    Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex.
    Lafleur LP; Klees-Themens G; Chouinard-Leclaire C; Larochelle-Brunet F; Tremblay S; Lepage JF; Théoret H
    Brain Res; 2020 Jan; 1727():146542. PubMed ID: 31712086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of beta-tACS on corticospinal excitability: A meta-analysis.
    Wischnewski M; Schutter DJLG; Nitsche MA
    Brain Stimul; 2019; 12(6):1381-1389. PubMed ID: 31405789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent.
    Raco V; Bauer R; Norim S; Gharabaghi A
    Brain Stimul; 2017; 10(6):1055-1060. PubMed ID: 28779945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease.
    Guerra A; Asci F; D'Onofrio V; Sveva V; Bologna M; Fabbrini G; Berardelli A; Suppa A
    J Neurosci; 2020 Jun; 40(24):4788-4796. PubMed ID: 32430296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic nicotine consumption on motor cortical excitability: A transcranial magnetic stimulation study.
    Khedr EM; Tony AA; Abdelwarith A; Safwat M
    Neurophysiol Clin; 2020 Feb; 50(1):33-39. PubMed ID: 31836418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian approach to analysing cortico-cortical associative stimulation induced increases in the excitability of corticospinal projections in humans.
    Carson RG; Capozio A; McNickle E; Sack AT
    Exp Brain Res; 2021 Jan; 239(1):21-30. PubMed ID: 33097986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet.
    Gallasch E; Rafolt D; Postruznik M; Fresnoza S; Christova M
    Clin Neurophysiol; 2018 Jul; 129(7):1397-1402. PubMed ID: 29729595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.