These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 33740880)

  • 1. In vitro comparative study of red blood cell and VWF damage on 3D printing biomaterials under different blood-contacting conditions.
    Jiang Q; Mei X; Huan N; Su W; Cheng L; He H; Zhang L
    Proc Inst Mech Eng H; 2023 Aug; 237(8):1029-1036. PubMed ID: 37417741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index.
    Fraser KH; Zhang T; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2012 Aug; 134(8):081002. PubMed ID: 22938355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of the power law hemolysis model using a Couette shearing device.
    Froese V; Goubergrits L; Kertzscher U; Lommel M
    Artif Organs; 2024 May; 48(5):495-503. PubMed ID: 38146895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impella 5.5 Versus Centrimag: A Head-to-Head Comparison of Device Hemocompatibility.
    Roka-Moiia Y; Li M; Ivich A; Muslmani S; Kern KB; Slepian MJ
    ASAIO J; 2020; 66(10):1142-1151. PubMed ID: 33136602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated Hemocompatibility Testing of Rotary Blood Pumps.
    McNamee AP; Griffith TA; Smith AG; Kuck L; Simmonds MJ
    ASAIO J; 2023 Oct; 69(10):918-923. PubMed ID: 37256782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemolysis Testing In Vitro: A Review of Challenges and Potential Improvements.
    von Petersdorff-Campen K; Schmid Daners M
    ASAIO J; 2022 Jan; 68(1):3-13. PubMed ID: 33989208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive comparison of the
    Li P; Mei X; Ge W; Wu T; Zhong M; Huan N; Jiang Q; Hsu PL; Steinseifer U; Dong N; Zhang L
    Front Physiol; 2023; 14():1136545. PubMed ID: 37228828
    [No Abstract]   [Full Text] [Related]  

  • 8. von Willebrand factor disruption and continuous-flow circulatory devices.
    Proudfoot AG; Davidson SJ; Strueber M
    J Heart Lung Transplant; 2017 Nov; 36(11):1155-1163. PubMed ID: 28756118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.
    Gogia S; Neelamegham S
    Biorheology; 2015; 52(5-6):319-35. PubMed ID: 26600266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical models for shear-induced blood damage based on vortex platform.
    Mei X; Zhong M; Ge W; Zhang L
    Int J Artif Organs; 2022 Apr; 45(4):397-403. PubMed ID: 33740880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro study of red blood cell and VWF damage in mechanical circulatory support devices based on blood-shearing platform.
    Mei X; Lu B; Wu P; Zhang L
    Proc Inst Mech Eng H; 2022 Jun; 236(6):860-866. PubMed ID: 35369808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear Stress-Induced Total Blood Trauma in Multiple Species.
    Chan CHH; Pieper IL; Robinson CR; Friedmann Y; Kanamarlapudi V; Thornton CA
    Artif Organs; 2017 Oct; 41(10):934-947. PubMed ID: 28744884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of surface roughness on the damage of von Willebrand Factor under shear flow condition.
    Mei X; Lu B; Zhong M; Zhu Y; Zhang L; Ge W
    Int J Artif Organs; 2022 Apr; 45(4):412-420. PubMed ID: 34736346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a mathematical model for evaluating shear-induced damage of von Willebrand factor.
    Li Y; Xi Y; Wang H; Sun A; Wang L; Deng X; Chen Z; Fan Y
    Comput Biol Med; 2023 Sep; 164():107379. PubMed ID: 37597407
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.