These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33741029)

  • 1. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Hybrid Input Part Using Riboswitch and Transcriptional Repressor for Signal Inverting Amplifier.
    Jang S; Jang S; Noh MH; Lim HG; Jung GY
    ACS Synth Biol; 2018 Sep; 7(9):2199-2204. PubMed ID: 30092633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli.
    Wang T; Simmel FC
    Nucleic Acids Res; 2022 May; 50(8):4784-4798. PubMed ID: 35446427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Toehold Switches; a foothold for Synthetic Biology".
    Yarra SS; Ashok G; Mohan U
    Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
    Chau THT; Mai DHA; Pham DN; Le HTQ; Lee EY
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-to-function deep learning frameworks for engineered riboregulators.
    Valeri JA; Collins KM; Ramesh P; Alcantar MA; Lepe BA; Lu TK; Camacho DM
    Nat Commun; 2020 Oct; 11(1):5058. PubMed ID: 33028819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer.
    Baabu PRS; Srinivasan S; Nagarajan S; Muthamilselvan S; Selvi T; Suresh RR; Palaniappan A
    Synth Syst Biotechnol; 2022 Jun; 7(2):802-814. PubMed ID: 35475253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.
    Kim J; Seo M; Lim Y; Kim J
    Adv Sci (Weinh); 2024 Jul; ():e2402029. PubMed ID: 39075726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular Computational Logic Using Toehold Switches.
    Choi S; Lee G; Kim J
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells.
    Zhao Y; Poudel P; Wang S
    Methods Mol Biol; 2024; 2774():243-258. PubMed ID: 38441769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toehold switch plus signal amplification enables rapid detection.
    Morey K; Thomas-Fenderson T; Watson A; Sebesta J; Peebles C; Gentry-Weeks C
    Biotechnol J; 2023 Dec; 18(12):e2200607. PubMed ID: 37641181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High content design of riboswitch biosensors: All-around rational module-by-module design.
    Wu Y; Zhu L; Li S; Chu H; Wang X; Xu W
    Biosens Bioelectron; 2023 Jan; 220():114887. PubMed ID: 36395732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning approach to programmable RNA switches.
    Angenent-Mari NM; Garruss AS; Soenksen LR; Church G; Collins JJ
    Nat Commun; 2020 Oct; 11(1):5057. PubMed ID: 33028812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy.
    Cui W; Lin Q; Wu Y; Wang X; Zhang Y; Lin X; Zhang L; Liu X; Han L; Zhou Z
    ACS Synth Biol; 2023 Dec; 12(12):3716-3729. PubMed ID: 38052004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Ribocomputing Devices for Complex Cellular Logic.
    McCutcheon G; Chaudhary S; Hong S; Park D; Kim J; Green AA
    Methods Mol Biol; 2022; 2518():65-86. PubMed ID: 35666439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter.
    Franco RAL; Brenner G; Zocca VFB; de Paiva GB; Lima RN; Rech EL; Amaral DT; Lins MRCR; Pedrolli DB
    ACS Synth Biol; 2023 Oct; 12(10):2819-2826. PubMed ID: 37792474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.