These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33741029)

  • 21. Design and Evaluation of Synthetic RNA-Based Incoherent Feed-Forward Loop Circuits.
    Hong S; Jeong D; Ryan J; Foo M; Tang X; Kim J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of
    Heo T; Kang H; Choi S; Kim J
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short Activators and Repressors of RNA Toehold Switches.
    McSweeney MA; Zhang Y; Styczynski MP
    ACS Synth Biol; 2023 Mar; 12(3):681-688. PubMed ID: 36802167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Buffers Permit Sensitivity Tuning and Inversion of Riboswitch Signals.
    Rugbjerg P; Genee HJ; Jensen K; Sarup-Lytzen K; Sommer MO
    ACS Synth Biol; 2016 Jul; 5(7):632-8. PubMed ID: 27138234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function.
    Siu KH; Chen W
    Nat Chem Biol; 2019 Mar; 15(3):217-220. PubMed ID: 30531984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch.
    Dwidar M; Seike Y; Kobori S; Whitaker C; Matsuura T; Yokobayashi Y
    J Am Chem Soc; 2019 Jul; 141(28):11103-11114. PubMed ID: 31241330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.
    Xiu Y; Jang S; Jones JA; Zill NA; Linhardt RJ; Yuan Q; Jung GY; Koffas MAG
    Biotechnol Bioeng; 2017 Oct; 114(10):2235-2244. PubMed ID: 28543037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli.
    Jang S; Jung GY
    Biotechnol Bioeng; 2018 Jan; 115(1):266-271. PubMed ID: 28892124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of RNA-Based Translational Repressors.
    Hong S; Park D; Chaudhary S; McCutcheon G; Green AA; Kim J
    Methods Mol Biol; 2022; 2518():49-64. PubMed ID: 35666438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplifying Riboswitch Signal Output Using Cellular Wiring.
    Goodson MS; Bennett AC; Jennewine BR; Briskin E; Harbaugh SV; Kelley-Loughnane N
    ACS Synth Biol; 2017 Aug; 6(8):1440-1444. PubMed ID: 28430408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide kinase-based selection system for genetic switches.
    Ike K; Umeno D
    Methods Mol Biol; 2014; 1111():141-52. PubMed ID: 24549617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Design of RNA Toehold-Mediated Translation Activators.
    Wu K; Yan Z; Green AA
    Methods Mol Biol; 2022; 2518():33-47. PubMed ID: 35666437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning strand displacement kinetics enables programmable ZTP riboswitch dynamic range in vivo.
    Bushhouse DZ; Lucks JB
    Nucleic Acids Res; 2023 Apr; 51(6):2891-2903. PubMed ID: 36864761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of cell-free platform-based toehold switch system for detection of IP-10 mRNA, an indicator for acute kidney allograft rejection diagnosis.
    Chau THT; Lee EY
    Clin Chim Acta; 2020 Nov; 510():619-624. PubMed ID: 32860784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.