BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

774 related articles for article (PubMed ID: 33741032)

  • 41. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches.
    Song D; Powles T; Shi L; Zhang L; Ingersoll MA; Lu YJ
    J Pathol; 2019 Oct; 249(2):151-165. PubMed ID: 31102277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PD-L1 and B7-1 Cis-Interaction: New Mechanisms in Immune Checkpoints and Immunotherapies.
    Nishimura CD; Pulanco MC; Cui W; Lu L; Zang X
    Trends Mol Med; 2021 Mar; 27(3):207-219. PubMed ID: 33199209
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review.
    Poniewierska-Baran A; Sobolak K; Niedźwiedzka-Rystwej P; Plewa P; Pawlik A
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of tumor microenvironment in the regulation of PD-L1: A novel role in resistance to cancer immunotherapy.
    Kalantari Khandani N; Ghahremanloo A; Hashemy SI
    J Cell Physiol; 2020 Oct; 235(10):6496-6506. PubMed ID: 32239707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy.
    Ayala-Mar S; Donoso-Quezada J; González-Valdez J
    J Immunol Res; 2021; 2021():8839978. PubMed ID: 33628854
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential.
    Maes K; Mondino A; Lasarte JJ; Agirre X; Vanderkerken K; Prosper F; Breckpot K
    Front Immunol; 2021; 12():652160. PubMed ID: 33859645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy.
    Pan C; Liu H; Robins E; Song W; Liu D; Li Z; Zheng L
    J Hematol Oncol; 2020 Apr; 13(1):29. PubMed ID: 32245497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond.
    Ai L; Xu A; Xu J
    Adv Exp Med Biol; 2020; 1248():33-59. PubMed ID: 32185706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential and unsolved problems of anti-PD-1/PD-L1 therapy combined with radiotherapy.
    Cao Y; Li W; Wang Z; Pang H
    Tumori; 2021 Aug; 107(4):282-291. PubMed ID: 32734832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Microenvironment of Head and Neck Cancers: Papillomavirus Involvement and Potential Impact of Immunomodulatory Treatments.
    Outh-Gauer S; Morini A; Tartour E; Lépine C; Jung AC; Badoual C
    Head Neck Pathol; 2020 Jun; 14(2):330-340. PubMed ID: 32124416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical impact of checkpoint inhibitors as novel cancer therapies.
    Shih K; Arkenau HT; Infante JR
    Drugs; 2014 Nov; 74(17):1993-2013. PubMed ID: 25344022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immune checkpoint inhibition in ovarian cancer.
    Hamanishi J; Mandai M; Konishi I
    Int Immunol; 2016 Jul; 28(7):339-48. PubMed ID: 27055470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prognostic Biomarkers for Melanoma Immunotherapy.
    Twitty CG; Huppert LA; Daud AI
    Curr Oncol Rep; 2020 Feb; 22(3):25. PubMed ID: 32048065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion.
    Jiang Y; Zhan H
    Cancer Lett; 2020 Jan; 468():72-81. PubMed ID: 31605776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immune-Checkpoint Blockade Therapy in Lymphoma.
    Kuzume A; Chi S; Yamauchi N; Minami Y
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751706
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers.
    Suzuki S; Ogawa T; Sano R; Takahara T; Inukai D; Akira S; Tsuchida H; Yoshikawa K; Ueda R; Tsuzuki T
    Cancer Sci; 2020 Jun; 111(6):1943-1957. PubMed ID: 32304268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.