These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 33741032)

  • 81. [Research Advances of Immunotherapy of Exosome PD-L1 
in Non-small Cell Lung Cancer].
    Wang N; Song X
    Zhongguo Fei Ai Za Zhi; 2022 Sep; 25(9):689-695. PubMed ID: 36172735
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Resistance to Checkpoint Inhibition in Cancer Immunotherapy.
    Barrueto L; Caminero F; Cash L; Makris C; Lamichhane P; Deshmukh RR
    Transl Oncol; 2020 Mar; 13(3):100738. PubMed ID: 32114384
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer.
    Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment.
    Pennock GK; Chow LQ
    Oncologist; 2015 Jul; 20(7):812-22. PubMed ID: 26069281
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Not All Immune Checkpoints Are Created Equal.
    De Sousa Linhares A; Leitner J; Grabmeier-Pfistershammer K; Steinberger P
    Front Immunol; 2018; 9():1909. PubMed ID: 30233564
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Checkpoint blocking antibodies in cancer immunotherapy.
    Kyi C; Postow MA
    FEBS Lett; 2014 Jan; 588(2):368-76. PubMed ID: 24161671
    [TBL] [Abstract][Full Text] [Related]  

  • 88. CTLA-4 Expression and Its Clinical Significance in Breast Cancer.
    Kern R; Panis C
    Arch Immunol Ther Exp (Warsz); 2021 Jun; 69(1):16. PubMed ID: 34148159
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors.
    Derer A; Frey B; Fietkau R; Gaipl US
    Cancer Immunol Immunother; 2016 Jul; 65(7):779-86. PubMed ID: 26590829
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development.
    Yasuda T; Wang YA
    Trends Cancer; 2024 Jul; 10(7):627-642. PubMed ID: 38600020
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Development of adaptive immune effector therapies in solid tumors.
    Comoli P; Chabannon C; Koehl U; Lanza F; Urbano-Ispizua A; Hudecek M; Ruggeri A; Secondino S; Bonini C; Pedrazzoli P;
    Ann Oncol; 2019 Nov; 30(11):1740-1750. PubMed ID: 31435646
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy.
    Benoit A; Vogin G; Duhem C; Berchem G; Janji B
    Cells; 2023 Jul; 12(13):. PubMed ID: 37443821
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition.
    Singh R; Srivastava P; Manna PP
    Med Oncol; 2024 Jan; 41(2):59. PubMed ID: 38238513
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer.
    Zhang XJ; Yu Y; Zhao HP; Guo L; Dai K; Lv J
    World J Gastroenterol; 2024 Apr; 30(16):2195-2208. PubMed ID: 38690024
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment.
    Yin Q; Song SY; Bian Y; Wang Y; Deng A; Lv J; Wang Y
    Front Immunol; 2024; 15():1381778. PubMed ID: 38947336
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Immune checkpoint inhibitors for small cell lung cancer: opportunities and challenges.
    Regzedmaa O; Zhang H; Liu H; Chen J
    Onco Targets Ther; 2019; 12():4605-4620. PubMed ID: 31354294
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy.
    Meenakshi S; Maharana KC; Nama L; Vadla UK; Dhingra S; Ravichandiran V; Murti K; Kumar N
    Curr Neuropharmacol; 2024; 22(7):1248-1270. PubMed ID: 37605389
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dawn era for revisited cancer therapy by innate immune system and immune checkpoint inhibitors.
    Kim HD; Yeh CY; Chang YC; Kim CH
    Biochim Biophys Acta Mol Basis Dis; 2024 Mar; 1870(3):167019. PubMed ID: 38211726
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Translational Control of Immune Evasion in Cancer.
    Suresh S; O'Donnell KA
    Trends Cancer; 2021 Jul; 7(7):580-582. PubMed ID: 33972197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.