These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33741529)
1. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Notonier S; Werner AZ; Kuatsjah E; Dumalo L; Abraham PE; Hatmaker EA; Hoyt CB; Amore A; Ramirez KJ; Woodworth SP; Klingeman DM; Giannone RJ; Guss AM; Hettich RL; Eltis LD; Johnson CW; Beckham GT Metab Eng; 2021 May; 65():111-122. PubMed ID: 33741529 [TBL] [Abstract][Full Text] [Related]
2. Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440. Bleem AC; Kuatsjah E; Johnsen J; Mohamed ET; Alexander WG; Kellermyer ZA; Carroll AL; Rossi R; Schlander IB; Peabody V GL; Guss AM; Feist AM; Beckham GT Metab Eng; 2024 Jul; 84():145-157. PubMed ID: 38936762 [TBL] [Abstract][Full Text] [Related]
3. The Syringate Araki T; Tanatani K; Kamimura N; Otsuka Y; Yamaguchi M; Nakamura M; Masai E Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917754 [TBL] [Abstract][Full Text] [Related]
4. Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. Gómez-Álvarez H; Iturbe P; Rivero-Buceta V; Mines P; Bugg TDH; Nogales J; Díaz E Bioresour Technol; 2022 Feb; 346():126638. PubMed ID: 34971782 [TBL] [Abstract][Full Text] [Related]
5. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. Lee S; Jung YJ; Park SJ; Ryu MH; Kim JE; Song HM; Kang KH; Song BK; Sung BH; Kim YH; Kim HT; Joo JC Bioresour Technol; 2022 May; 352():127106. PubMed ID: 35378283 [TBL] [Abstract][Full Text] [Related]
6. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Li J; Yue C; Wei W; Shang Y; Zhang P; Ye BC Bioresour Technol; 2022 Jan; 344(Pt B):126221. PubMed ID: 34728357 [TBL] [Abstract][Full Text] [Related]
7. Biological Valorization of Lignin-Derived Aromatics in Hydrolysate to Protocatechuic Acid by Engineered Jin X; Li X; Zou L; Zheng Z; Ouyang J Molecules; 2024 Mar; 29(7):. PubMed ID: 38611834 [TBL] [Abstract][Full Text] [Related]
8. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. Wang L; Maranas CD ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6. Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M J Bacteriol; 2004 Aug; 186(15):4951-9. PubMed ID: 15262932 [TBL] [Abstract][Full Text] [Related]
10. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Salvachúa D; Werner AZ; Pardo I; Michalska M; Black BA; Donohoe BS; Haugen SJ; Katahira R; Notonier S; Ramirez KJ; Amore A; Purvine SO; Zink EM; Abraham PE; Giannone RJ; Poudel S; Laible PD; Hettich RL; Beckham GT Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9302-9310. PubMed ID: 32245809 [TBL] [Abstract][Full Text] [Related]
11. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Mueller J; Willett H; Feist AM; Niu W Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438 [TBL] [Abstract][Full Text] [Related]
12. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838 [TBL] [Abstract][Full Text] [Related]
13. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. Nogales J; Canales A; Jiménez-Barbero J; García JL; Díaz E J Biol Chem; 2005 Oct; 280(42):35382-90. PubMed ID: 16030014 [TBL] [Abstract][Full Text] [Related]
15. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Kohlstedt M; Starck S; Barton N; Stolzenberger J; Selzer M; Mehlmann K; Schneider R; Pleissner D; Rinkel J; Dickschat JS; Venus J; B J H van Duuren J; Wittmann C Metab Eng; 2018 May; 47():279-293. PubMed ID: 29548984 [TBL] [Abstract][Full Text] [Related]
16. Redundancy in aromatic O-demethylation and ring opening reactions in Perez JM; Kontur WS; Gehl C; Gille DM; Ma Y; Niles AV; Umana G; Donohue TJ; Noguera DR Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579679 [TBL] [Abstract][Full Text] [Related]
17. Lignin valorization through integrated biological funneling and chemical catalysis. Linger JG; Vardon DR; Guarnieri MT; Karp EM; Hunsinger GB; Franden MA; Johnson CW; Chupka G; Strathmann TJ; Pienkos PT; Beckham GT Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12013-8. PubMed ID: 25092344 [TBL] [Abstract][Full Text] [Related]
18. The catabolism of lignin-derived Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926 [TBL] [Abstract][Full Text] [Related]
19. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. Kasai D; Masai E; Katayama Y; Fukuda M FEMS Microbiol Lett; 2007 Sep; 274(2):323-8. PubMed ID: 17645527 [TBL] [Abstract][Full Text] [Related]
20. Isolation of a novel platform bacterium for lignin valorization and its application in glucose-free cis,cis-muconate production. Shinoda E; Takahashi K; Abe N; Kamimura N; Sonoki T; Masai E J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1071-1080. PubMed ID: 31134414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]