BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 33741686)

  • 1. Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching.
    Chen M; Zhan Q; Mu Z; Wang L; Zheng Z; Miao J; Zhu P; Li YI
    Genome Res; 2021 Apr; 31(4):698-712. PubMed ID: 33741686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.
    Holland CH; Tanevski J; Perales-Patón J; Gleixner J; Kumar MP; Mereu E; Joughin BA; Stegle O; Lauffenburger DA; Heyn H; Szalai B; Saez-Rodriguez J
    Genome Biol; 2020 Feb; 21(1):36. PubMed ID: 32051003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying cell types to interpret scRNA-seq data: how, why and more possibilities.
    Wang Z; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jul; 19(4):286-291. PubMed ID: 32232401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MLG: multilayer graph clustering for multi-condition scRNA-seq data.
    Lu S; Conn DJ; Chen S; Johnson KD; Bresnick EH; Keleş S
    Nucleic Acids Res; 2021 Dec; 49(22):e127. PubMed ID: 34581807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral clustering of single cells using Siamese nerual network combined with improved affinity matrix.
    Jiang H; Huang Y; Li Q
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35419595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An active learning approach for clustering single-cell RNA-seq data.
    Lin X; Liu H; Wei Z; Roy SB; Gao N
    Lab Invest; 2022 Mar; 102(3):227-235. PubMed ID: 34244616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets.
    Ming J; Lin Z; Zhao J; Wan X; ; Yang C; Wu AR
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data.
    Qi R; Wu J; Guo F; Xu L; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis.
    Zhang Y; Kim MS; Reichenberger ER; Stear B; Taylor DM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007794. PubMed ID: 32339163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing.
    Gupta RK; Kuznicki J
    Cells; 2020 Jul; 9(8):. PubMed ID: 32707839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.