BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33742228)

  • 1. AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size.
    Tobler P; Cyriac J; Kovacs BK; Hofmann V; Sexauer R; Paciolla F; Stieltjes B; Amsler F; Hirschmann A
    Eur Radiol; 2021 Sep; 31(9):6816-6824. PubMed ID: 33742228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
    Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T
    JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice.
    Russe MF; Rebmann P; Tran PH; Kellner E; Reisert M; Bamberg F; Kotter E; Kim S
    BMJ Open; 2024 Jan; 14(1):e076954. PubMed ID: 38262641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
    Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J
    Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and localization of distal radius fractures: Deep learning system versus radiologists.
    Blüthgen C; Becker AS; Vittoria de Martini I; Meier A; Martini K; Frauenfelder T
    Eur J Radiol; 2020 May; 126():108925. PubMed ID: 32193036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting pediatric wrist fractures using deep-learning-based object detection.
    Zech JR; Carotenuto G; Igbinoba Z; Tran CV; Insley E; Baccarella A; Wong TT
    Pediatr Radiol; 2023 May; 53(6):1125-1134. PubMed ID: 36650360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs.
    Mawatari T; Hayashida Y; Katsuragawa S; Yoshimatsu Y; Hamamura T; Anai K; Ueno M; Yamaga S; Ueda I; Terasawa T; Fujisaki A; Chihara C; Miyagi T; Aoki T; Korogi Y
    Eur J Radiol; 2020 Sep; 130():109188. PubMed ID: 32721827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study.
    Wu J; Liu N; Li X; Fan Q; Li Z; Shang J; Wang F; Chen B; Shen Y; Cao P; Liu Z; Li M; Qian J; Yang J; Sun Q
    BMC Med Imaging; 2023 Jan; 23(1):18. PubMed ID: 36717773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons.
    Suzuki T; Maki S; Yamazaki T; Wakita H; Toguchi Y; Horii M; Yamauchi T; Kawamura K; Aramomi M; Sugiyama H; Matsuura Y; Yamashita T; Orita S; Ohtori S
    J Digit Imaging; 2022 Feb; 35(1):39-46. PubMed ID: 34913132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do 3-D Printed Handheld Models Improve Surgeon Reliability for Recognition of Intraarticular Distal Radius Fracture Characteristics?
    Langerhuizen DWG; Doornberg JN; Janssen MMA; Kerkhoffs GMMJ; Jaarsma RL; Janssen SJ
    Clin Orthop Relat Res; 2020 Dec; 478(12):2901-2908. PubMed ID: 32667759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can AI outperform a junior resident? Comparison of deep neural network to first-year radiology residents for identification of pneumothorax.
    Yi PH; Kim TK; Yu AC; Bennett B; Eng J; Lin CT
    Emerg Radiol; 2020 Aug; 27(4):367-375. PubMed ID: 32643070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Deep Learning On Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid?
    Langerhuizen DWG; Bulstra AEJ; Janssen SJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2020 Nov; 478(11):2653-2659. PubMed ID: 32452927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different radiography systems in an experimental study for detection of forearm fractures and evaluation of the Müller-AO and Frykman classification for distal radius fractures.
    Metz S; Kuhn V; Kettler M; Hudelmaier M; Bonel HM; Waldt S; Hollweck R; Renger B; Rummeny EJ; Link TM
    Invest Radiol; 2006 Sep; 41(9):681-90. PubMed ID: 16896303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Distal Radius Fractures Using a Segmentation-Based Deep Learning Model.
    Anttila TT; Karjalainen TV; Mäkelä TO; Waris EM; Lindfors NC; Leminen MM; Ryhänen JO
    J Digit Imaging; 2023 Apr; 36(2):679-687. PubMed ID: 36542269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic Performance of Artificial Intelligence for Detection of Scaphoid and Distal Radius Fractures: A Systematic Review.
    Oeding JF; Kunze KN; Messer CJ; Pareek A; Fufa DT; Pulos N; Rhee PC
    J Hand Surg Am; 2024 May; 49(5):411-422. PubMed ID: 38551529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Teaching the Basics: Development and Validation of a Distal Radius Reduction and Casting Model.
    Seeley MA; Fabricant PD; Lawrence JTR
    Clin Orthop Relat Res; 2017 Sep; 475(9):2298-2305. PubMed ID: 28374350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays.
    Oka K; Shiode R; Yoshii Y; Tanaka H; Iwahashi T; Murase T
    J Orthop Surg Res; 2021 Nov; 16(1):694. PubMed ID: 34823550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Casting Simulation on Maintenance of Fracture Alignment Following Closed Reduction of Pediatric Distal Radius Fractures: Does More Simulation Matter?
    Rabinovich RV; Shore BJ; Glotzbecker M; Kalish LA; Bae DS
    J Surg Educ; 2021; 78(5):1717-1724. PubMed ID: 33896733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing an artificial intelligence diagnostic tool for paediatric distal radius fractures, a proof of concept study.
    Aryasomayajula S; Hing CB; Siebachmeyer M; Naeini FB; Ejindu V; Leitch P; Gelfer Y; Zweiri Y
    Ann R Coll Surg Engl; 2023 Nov; 105(8):721-728. PubMed ID: 37642151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments.
    Gan K; Xu D; Lin Y; Shen Y; Zhang T; Hu K; Zhou K; Bi M; Pan L; Wu W; Liu Y
    Acta Orthop; 2019 Aug; 90(4):394-400. PubMed ID: 30942136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.