These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33742553)

  • 1. Bio-inspired Underwater Super-Oil-Wettability for Controlling Platelet Adhesion.
    Parbat D; Bhunia BK; Mandal BB; Manna U
    Chem Asian J; 2021 May; 16(9):1081-1085. PubMed ID: 33742553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water.
    Parbat D; Gaffar S; Rather AM; Gupta A; Manna U
    Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dually reactive multilayer coatings enable orthogonal manipulation of underwater superoleophobicity and oil adhesion
    Borbora A; Dupont RL; Xu Y; Wang X; Manna U
    Mater Horiz; 2022 Mar; 9(3):991-1001. PubMed ID: 34985064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of chemistry in bio-inspired liquid wettability.
    Shome A; Das A; Borbora A; Dhar M; Manna U
    Chem Soc Rev; 2022 Jul; 51(13):5452-5497. PubMed ID: 35726911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Inspired Underwater Super Oil-Repellent Coatings for Anti-Oil Pollution.
    Chen Y; Meng J; Zhu Z; Zhang F; Wang L; Gu Z; Wang S
    Langmuir; 2018 May; 34(21):6063-6069. PubMed ID: 29737857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customizing oil-wettability in air-without affecting extreme water repellency.
    Das A; Manna U
    Nanoscale; 2020 Dec; 12(48):24349-24356. PubMed ID: 33169782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green and Rapid Synthesis of Durable and Super-Oil (under Water) and Water (in Air) Repellent Interfaces.
    Rather AM; Manna U
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23451-23457. PubMed ID: 29979031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of platelet adhesion on the polysulfone porous catheter by saline solution perfusion, I. In vitro investigation.
    Khang G; Park JB; Lee HB
    Biomed Mater Eng; 1996; 6(1):47-66. PubMed ID: 8727502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties.
    Liu W; Liu X; Fangteng J; Wang S; Fang L; Shen H; Xiang S; Sun H; Yang B
    Nanoscale; 2014 Nov; 6(22):13845-53. PubMed ID: 25303770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces.
    Baruah U; Das A; Manna U
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28571-28581. PubMed ID: 31298026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platelet adhesion onto wettability gradient surfaces in the absence and presence of plasma proteins.
    Lee JH; Lee HB
    J Biomed Mater Res; 1998 Aug; 41(2):304-11. PubMed ID: 9638536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced underwater superoleophobicity of TiO2 thin films.
    Sawai Y; Nishimoto S; Kameshima Y; Fujii E; Miyake M
    Langmuir; 2013 Jun; 29(23):6784-9. PubMed ID: 23701360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity.
    Moradi S; Hadjesfandiari N; Toosi SF; Kizhakkedathu JN; Hatzikiriakos SG
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17631-41. PubMed ID: 27322889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 'reactive' and covalent polymeric multilayer coatings with durable superoleophobic and superoleophilic properties under water.
    Parbat D; Manna U
    Chem Sci; 2017 Sep; 8(9):6092-6102. PubMed ID: 28989639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of polysulfone II. Platelet adhesion and cho cell growth.
    Khang G; Jeong BJ; Lee HB; Park JB
    Biomed Mater Eng; 1995; 5(4):259-73. PubMed ID: 8785510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Coatings with Controlled Wettability for Oil-Water Separation.
    Fan S; Li Y; Wang R; Ma W; Shi Y; Fan W; Zhuo K; Xu G
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity.
    Liu X; Zhou J; Xue Z; Gao J; Meng J; Wang S; Jiang L
    Adv Mater; 2012 Jul; 24(25):3401-5. PubMed ID: 22648962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.