These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33742759)

  • 1. Empirical tests of habitat selection theory reveal that conspecific density and patch quality, but not habitat amount, drive long-distance immigration in a wild bird.
    Rushing CS; Brandt Ryder T; Valente JJ; Scott Sillett T; Marra PP
    Ecol Lett; 2021 Jun; 24(6):1167-1177. PubMed ID: 33742759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of large-scale source-sink dynamics and long-distance dispersal among Wood Thrush populations.
    Tittler R; Fahrig L; Villard MA
    Ecology; 2006 Dec; 87(12):3029-36. PubMed ID: 17249228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat features and long-distance dispersal modify the use of social information by a long-distance migratory bird.
    Rushing CS; Dudash MR; Marra PP
    J Anim Ecol; 2015 Nov; 84(6):1469-79. PubMed ID: 26061822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nest-site selection of passerines: effects of geographic scale and public and personal information.
    Citta JJ; Lindberg MS
    Ecology; 2007 Aug; 88(8):2034-46. PubMed ID: 17824435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Settlement decisions in blue tits: difference in the use of social information according to age and individual success.
    Parejo D; White J; Danchin E
    Naturwissenschaften; 2007 Sep; 94(9):749-57. PubMed ID: 17487465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.
    Pavlacky DC; Possingham HP; Lowe AJ; Prentis PJ; Green DJ; Goldizen AW
    J Anim Ecol; 2012 Sep; 81(5):940-52. PubMed ID: 22489927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes and song: genetic and social connections in fragmented habitat in a woodland bird with limited dispersal.
    Pavlova A; Amos JN; Goretskaia MI; Beme IR; Buchanan KL; Takeuchi N; Radford JQ; Sunnucks P
    Ecology; 2012 Jul; 93(7):1717-27. PubMed ID: 22919917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersal distance is driven by habitat availability and reproductive success in Northern Great Plains piping plovers.
    Swift RJ; Anteau MJ; Ellis KS; Ring MM; Sherfy MH; Toy DL
    Mov Ecol; 2021 Dec; 9(1):59. PubMed ID: 34895328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes.
    Hovestadt T; Binzenhöfer B; Nowicki P; Settele J
    J Anim Ecol; 2011 Sep; 80(5):1070-7. PubMed ID: 21585369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why we should care about movements: Using spatially explicit integrated population models to assess habitat source-sink dynamics.
    Paquet M; Arlt D; Knape J; Low M; Forslund P; Pärt T
    J Anim Ecol; 2020 Dec; 89(12):2922-2933. PubMed ID: 32981078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal dynamics of density-dependent dispersal during a population colonisation.
    De Bona S; Bruneaux M; Lee AEG; Reznick DN; Bentzen P; López-Sepulcre A
    Ecol Lett; 2019 Apr; 22(4):634-644. PubMed ID: 30714671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species interactions and population density mediate the use of social cues for habitat selection.
    Fletcher RJ
    J Anim Ecol; 2007 May; 76(3):598-606. PubMed ID: 17439476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dispersal System of a Butterfly: A Test of Source-Sink Theory Suggests the Intermediate-Scale Hypothesis.
    Boughton DA
    Am Nat; 2000 Aug; 156(2):131-144. PubMed ID: 10856197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Living in a ghetto within a local population: an empirical example of an ideal despotic distribution.
    Oro D
    Ecology; 2008 Mar; 89(3):838-46. PubMed ID: 18459346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can attraction to and competition for high-quality habitats shape breeding propensity?
    Acker P; Schaub M; Besnard A; Monnat JY; Cam E
    J Anim Ecol; 2022 May; 91(5):933-945. PubMed ID: 35157311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous positive and negative density-dependent dispersal in a colonial bird species.
    Kim SY; Torres R; Drummond H
    Ecology; 2009 Jan; 90(1):230-9. PubMed ID: 19294928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial structure and dispersal dynamics in a house sparrow metapopulation.
    Ranke PS; Araya-Ajoy YG; Ringsby TH; Pärn H; Rønning B; Jensen H; Wright J; Saether BE
    J Anim Ecol; 2021 Dec; 90(12):2767-2781. PubMed ID: 34455579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habitat detection, habitat choice copying or mating benefits: What drives conspecific attraction in a nomadic songbird?
    Luepold SB; Kokko H; Grendelmeier A; Pasinelli G
    J Anim Ecol; 2023 Jan; 92(1):195-206. PubMed ID: 36377920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding habitat selection across spatial scales: is grass always greener on the other side?
    Acker P; Besnard A; Monnat JY; Cam E
    Ecology; 2017 Oct; 98(10):2684-2697. PubMed ID: 28746975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shape of density dependence in fragmented landscapes explains an inverse buffer effect in a migratory songbird.
    Taylor CM
    Sci Rep; 2017 Nov; 7(1):14522. PubMed ID: 29109473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.