These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33742838)
1. [Influencing Factors of Cadmium Bioaccumulation Factor in Crops]. Chen J; Wang J; Wang YW; Yao QX; Su DC Huan Jing Ke Xue; 2021 Apr; 42(4):2031-2039. PubMed ID: 33742838 [TBL] [Abstract][Full Text] [Related]
2. Multivariate correlation analysis of bio-accumulation with soil properties and potential health risks of cadmium and lead in rice seeds and cabbage in pollution zones, China. Chen R; Wang Q; Lv J; Wang Z; Gao T Environ Geochem Health; 2021 Sep; 43(9):3485-3503. PubMed ID: 33566232 [TBL] [Abstract][Full Text] [Related]
3. Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi, China. Yang Y; Li C; Yang Z; Yu T; Jiang H; Han M; Liu X; Wang J; Zhang Q Environ Pollut; 2021 Sep; 285():117202. PubMed ID: 33964557 [TBL] [Abstract][Full Text] [Related]
4. [Quantitative Relationship Between Paddy Soil Properties and Cadmium Content in Rice Grains]. Wang MM; He MY; Su DC Huan Jing Ke Xue; 2018 Apr; 39(4):1918-1925. PubMed ID: 29965019 [TBL] [Abstract][Full Text] [Related]
5. Predictive model for cadmium uptake by maize and rice grains on the basis of bioconcentration factor and the diffusive gradients in thin-films technique. Chen R; Cheng N; Ding G; Ren F; Lv J; Shi R Environ Pollut; 2021 Nov; 289():117841. PubMed ID: 34325094 [TBL] [Abstract][Full Text] [Related]
6. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Li K; Cao C; Ma Y; Su D; Li J Sci Total Environ; 2019 Nov; 692():1022-1028. PubMed ID: 31539934 [TBL] [Abstract][Full Text] [Related]
7. [Main Control Factors of Cadmium Content in Rice in Carbonate Rock Region of Guangxi Based on the DGT Technique]. Song B; Xiao NC; Ma LJ; Li L; Chen TB Huan Jing Ke Xue; 2022 Jan; 43(1):463-471. PubMed ID: 34989531 [TBL] [Abstract][Full Text] [Related]
8. Influence of soil properties on cadmium accumulation in vegetables: Thresholds, prediction and pathway models based on big data. Pan SF; Ji XH; Xie YH; Liu SH; Tian FX; Liu XL Environ Pollut; 2022 Jul; 304():119225. PubMed ID: 35351593 [TBL] [Abstract][Full Text] [Related]
9. Cadmium accumulation in wheat and maize grains from China: Interaction of soil properties, novel enrichment models and soil thresholds. Zhuang Z; Niño-Savala AG; Mi ZD; Wan YN; Su DC; Li HF; Fangmeier A Environ Pollut; 2021 Apr; 275():116623. PubMed ID: 33578320 [TBL] [Abstract][Full Text] [Related]
10. [Characteristics of Heavy Metal Absorption by Winter Wheat and Its Quantitative Relationship with Influencing Factors]. Wang YW; Rui YK; Li ZY; Su DC Huan Jing Ke Xue; 2020 Mar; 41(3):1482-1490. PubMed ID: 32608652 [TBL] [Abstract][Full Text] [Related]
11. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Xu M; Yang L; Chen Y; Jing H; Wu P; Yang W Ecotoxicol Environ Saf; 2022 Dec; 247():114244. PubMed ID: 36326557 [TBL] [Abstract][Full Text] [Related]
12. Exploring the spatially varying relationships between cadmium accumulations and the main influential factors in the rice-wheat rotation system in a large-scale area. Qu M; Chen J; Huang B; Zhao Y Sci Total Environ; 2020 Sep; 736():139565. PubMed ID: 32485375 [TBL] [Abstract][Full Text] [Related]
13. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling. Yang Y; Li Y; Chen W; Wang M; Wang T; Dai Y Environ Pollut; 2020 Dec; 267():115613. PubMed ID: 33254622 [TBL] [Abstract][Full Text] [Related]
14. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Rehman MZ; Rizwan M; Ghafoor A; Naeem A; Ali S; Sabir M; Qayyum MF Environ Sci Pollut Res Int; 2015 Nov; 22(21):16897-906. PubMed ID: 26109220 [TBL] [Abstract][Full Text] [Related]
15. Predicting Cd accumulation in crops and identifying nonlinear effects of multiple environmental factors based on machine learning models. Lu X; Sun L; Zhang Y; Du J; Wang G; Huang X; Li X; Wang X Sci Total Environ; 2024 Nov; 951():175787. PubMed ID: 39187091 [TBL] [Abstract][Full Text] [Related]
16. Quadratic discriminant analysis model for assessing the risk of cadmium pollution for paddy fields in a county in China. Wang X; Li X; Ma R; Li Y; Wang W; Huang H; Xu C; An Y Environ Pollut; 2018 May; 236():366-372. PubMed ID: 29414359 [TBL] [Abstract][Full Text] [Related]
17. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Rehman MZU; Khalid H; Akmal F; Ali S; Rizwan M; Qayyum MF; Iqbal M; Khalid MU; Azhar M Environ Pollut; 2017 Aug; 227():560-568. PubMed ID: 28501770 [TBL] [Abstract][Full Text] [Related]
18. A novel method for predicting cadmium concentration in rice grain using genetic algorithm and back-propagation neural network based on soil properties. Hou YX; Zhao HF; Zhang Z; Wu KN Environ Sci Pollut Res Int; 2018 Dec; 25(35):35682-35692. PubMed ID: 30357664 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Sharma S; Nagpal AK; Kaur I Food Chem; 2018 Jul; 255():15-22. PubMed ID: 29571461 [TBL] [Abstract][Full Text] [Related]
20. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China. Zhan F; Zeng W; Yuan X; Li B; Li T; Zu Y; Jiang M; Li Y Environ Sci Pollut Res Int; 2019 Mar; 26(8):7743-7751. PubMed ID: 30671759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]