These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33743092)

  • 1. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium.
    Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y
    Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stages in the catalyst-free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition.
    Miao G; Zhang D
    Nanoscale Res Lett; 2012 Jun; 7(1):321. PubMed ID: 22716780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth kinetics of Ga
    Dagytė V; Heurlin M; Zeng X; Borgström MT
    Nanotechnology; 2018 Sep; 29(39):394001. PubMed ID: 29979150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.
    Park JH; Pozuelo M; Setiawan BP; Chung CH
    Nanoscale Res Lett; 2016 Dec; 11(1):208. PubMed ID: 27094822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.
    Parameshwaran V; Xu X; Clemens B
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21454-64. PubMed ID: 27455379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.
    Zannier V; Rossi F; Dubrovskii VG; Ercolani D; Battiato S; Sorba L
    Nano Lett; 2018 Jan; 18(1):167-174. PubMed ID: 29186660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow.
    Lehmann S; Wallentin J; Jacobsson D; Deppert K; Dick KA
    Nano Lett; 2013 Sep; 13(9):4099-105. PubMed ID: 23902379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition.
    Gao H; Sun W; Sun Q; Tan HH; Jagadish C; Zou J
    Nano Lett; 2019 Jun; 19(6):3782-3788. PubMed ID: 31117755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays.
    Gao Q; Dubrovskii VG; Caroff P; Wong-Leung J; Li L; Guo Y; Fu L; Tan HH; Jagadish C
    Nano Lett; 2016 Jul; 16(7):4361-7. PubMed ID: 27253040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.
    Oliveira DS; Zavarize M; Tizei LHG; Walls M; Ospina CA; Iikawa F; Ugarte D; Cotta MA
    Nanotechnology; 2017 Dec; 28(50):505604. PubMed ID: 29099391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Effect of Catalyst Size on the Epitaxial Growth of Hierarchical Structured InGaP Nanowires.
    Gao H; Sun Q; Sun W; Tan HH; Jagadish C; Zou J
    Nano Lett; 2019 Nov; 19(11):8262-8269. PubMed ID: 31661618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of InP nanowires: a first principles molecular dynamics study.
    Berwanger M; Schoenhalz AL; Dos Santos CL; Piquini P
    Phys Chem Chem Phys; 2016 Nov; 18(45):31101-31106. PubMed ID: 27809323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.
    Xiong Y; Xie Y; Li Z; Li X; Gao S
    Chemistry; 2004 Feb; 10(3):654-60. PubMed ID: 14767929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution phase synthesis of indium gallium phosphide alloy nanowires.
    Kornienko N; Whitmore DD; Yu Y; Leone SR; Yang P
    ACS Nano; 2015 Apr; 9(4):3951-60. PubMed ID: 25839336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing.
    Gao Q; Saxena D; Wang F; Fu L; Mokkapati S; Guo Y; Li L; Wong-Leung J; Caroff P; Tan HH; Jagadish C
    Nano Lett; 2014 Sep; 14(9):5206-11. PubMed ID: 25115241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium.
    Kim H; Ren D; Farrell AC; Huffaker DL
    Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission.
    Tateno K; Zhang G; Nakano H
    Nano Lett; 2008 Nov; 8(11):3645-50. PubMed ID: 18850750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.