BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3374322)

  • 1. Source of the urinary maltose and maltotriose excreted during intravenous infusion of oligosaccharide solutions in young pigs.
    Andersen DW; Filer LJ; Stegink LD
    Metabolism; 1988 Jun; 37(6):562-7. PubMed ID: 3374322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of intravenously administered glycogen by young pigs.
    Andersen DW; Stegink LD; Filer LJ; Applebaum AE
    J Nutr; 1987 Feb; 117(2):274-9. PubMed ID: 3559742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maltotriose and maltotetraose excreted in urine following intravenous administration of maltose to human volunteers.
    Yuge O; Morio M; Fukui T; Fujii K; Kikuchi H; Takahashi S
    Jpn J Surg; 1983 Jul; 13(4):296-303. PubMed ID: 6645121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of parenterally administered glucose oligosaccharides when infused with glucose and amino acids in postsurgical patients.
    Stegink LD; Zike WL; Andersen DW; Warwick TR
    Metabolism; 1986 Jun; 35(6):519-23. PubMed ID: 3086659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of intravenously administered beta-cellobiose and maltose by young pigs.
    Andersen DW; Daabees TT; Applebaum AE; Filer LJ; Stegink LD
    J Nutr; 1983 May; 113(5):1039-45. PubMed ID: 6842298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of intravenously infused glucose-oligosaccharides in fasted and fed pigs.
    Andersen DW; Filer LJ; Stegink LD
    J Nutr; 1983 Feb; 113(2):430-5. PubMed ID: 6822912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of intravenously infused maltooligosaccharides in rabbits.
    Watanabe S; Maruo S; Mukai H; Morino A
    Biol Pharm Bull; 1993 Oct; 16(10):1044-5. PubMed ID: 8287037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligosaccharides as an intravenous energy source in postsurgical patients: utilization when infused with glucose, amino acids, and lipid emulsion.
    Stegink LD; Zike WL; Andersen DW; Killion D
    Am J Clin Nutr; 1987 Sep; 46(3):461-6. PubMed ID: 3115081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities.
    Joyet P; Mokhtari A; Riboulet-Bisson E; Blancato VS; Espariz M; Magni C; Hartke A; Deutscher J; Sauvageot N
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile.
    Seigner C; Prodanov E; Marchis-Mouren G
    Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of intravenously administered glucose-oligosaccharides in growing miniature pigs.
    Andersen DW; Filer LJ; Wu-Rideout YC; White LB; Stegink LD
    Pediatr Res; 1982 Apr; 16(4 Pt 1):304-9. PubMed ID: 7079000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The catabolism of infused maltose in man].
    Finke C; Reinauer H
    Z Ernahrungswiss; 1976 Jun; 15(2):231-45. PubMed ID: 969711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of intravenously administered maltose in renal tubules in humans.
    Tahara Y; Fukuda M; Yamamoto Y; Noma Y; Yamato E; Cha T; Yoneda H; Ikegami H; Hirota M; Shima K
    Am J Clin Nutr; 1990 Oct; 52(4):689-93. PubMed ID: 2403061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of interference of icodextrin on creatinine measurements.
    Burke RA; Hughes G; Moberly JB
    Adv Perit Dial; 1999; 15():234-7. PubMed ID: 10682109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose absorption from maltotriose and glucose oligomers in the human jejunum.
    Jones BJ; Higgins BE; Silk DB
    Clin Sci (Lond); 1987 Apr; 72(4):409-14. PubMed ID: 3829588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose.
    Al Kazaz M; Desseaux V; Marchis-Mouren G; Prodanov E; Santimone M
    Eur J Biochem; 1998 Feb; 252(1):100-7. PubMed ID: 9523717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit.
    Lee S; Sauerbrei B; Niggemann J; Egelkrout E
    J Antibiot (Tokyo); 1997 Nov; 50(11):954-60. PubMed ID: 9592570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family.
    Salema-Oom M; Valadão Pinto V; Gonçalves P; Spencer-Martins I
    Appl Environ Microbiol; 2005 Sep; 71(9):5044-9. PubMed ID: 16151085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of intravenously administered maltose by growing miniature pigs.
    Andersen DW; Wu-Rideout MY; Filer LJ; Stegink LD
    J Nutr; 1981 Jul; 111(7):1185-95. PubMed ID: 7252600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for evaluating utilization of infused oligosaccharides in postsurgical patients.
    Stegink LD; Andersen DW; Zike WL
    JPEN J Parenter Enteral Nutr; 1987; 11(2):124-8. PubMed ID: 3108530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.