BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 33743810)

  • 1. Targeting chemokines for acute lymphoblastic leukemia therapy.
    Hong Z; Wei Z; Xie T; Fu L; Sun J; Zhou F; Jamal M; Zhang Q; Shao L
    J Hematol Oncol; 2021 Mar; 14(1):48. PubMed ID: 33743810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy.
    Han TT; Fan L; Li JY; Xu W
    Cancer Biol Ther; 2014 Jan; 15(1):3-9. PubMed ID: 24149438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.
    Chiarini F; Lonetti A; Evangelisti C; Buontempo F; Orsini E; Evangelisti C; Cappellini A; Neri LM; McCubrey JA; Martelli AM
    Biochim Biophys Acta; 2016 Mar; 1863(3):449-463. PubMed ID: 26334291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma.
    Barbieri F; Bajetto A; Thellung S; Würth R; Florio T
    Expert Opin Drug Discov; 2016 Nov; 11(11):1093-1109. PubMed ID: 27598329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies.
    Peled A; Klein S; Beider K; Burger JA; Abraham M
    Cytokine; 2018 Sep; 109():11-16. PubMed ID: 29903571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment.
    Scala S
    Clin Cancer Res; 2015 Oct; 21(19):4278-85. PubMed ID: 26199389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs.
    Gómez AM; Martínez C; González M; Luque A; Melen GJ; Martínez J; Hortelano S; Lassaletta Á; Madero L; Ramírez M
    Blood Cells Mol Dis; 2015 Oct; 55(3):220-7. PubMed ID: 26227851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target.
    de Lourdes Perim A; Amarante MK; Guembarovski RL; de Oliveira CE; Watanabe MA
    Cell Mol Life Sci; 2015 May; 72(9):1715-23. PubMed ID: 25572297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotactic Cues for NOTCH1-Dependent Leukemia.
    Piovan E; Tosello V; Amadori A; Zanovello P
    Front Immunol; 2018; 9():633. PubMed ID: 29666622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia.
    van den Berk LC; van der Veer A; Willemse ME; Theeuwes MJ; Luijendijk MW; Tong WH; van der Sluis IM; Pieters R; den Boer ML
    Br J Haematol; 2014 Jul; 166(2):240-9. PubMed ID: 24697337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment.
    Juarez J; Dela Pena A; Baraz R; Hewson J; Khoo M; Cisterne A; Fricker S; Fujii N; Bradstock KF; Bendall LJ
    Leukemia; 2007 Jun; 21(6):1249-57. PubMed ID: 17410186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia?
    Tavor S; Petit I
    Semin Cancer Biol; 2010 Jun; 20(3):178-85. PubMed ID: 20637871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of CXCR4 in the progression and therapy of acute leukaemia.
    Su L; Hu Z; Yang YG
    Cell Prolif; 2021 Jul; 54(7):e13076. PubMed ID: 34050566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemosensitivity is differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes in acute lymphoblastic leukemia with MLL gene rearrangements.
    Ando N; Furuichi Y; Kasai S; Tamai M; Harama D; Kagami K; Abe M; Goi K; Inukai T; Sugita K
    Leuk Res; 2018 Dec; 75():36-44. PubMed ID: 30453100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the microenvironment in acute myeloid leukemia.
    Rashidi A; Uy GL
    Curr Hematol Malig Rep; 2015 Jun; 10(2):126-31. PubMed ID: 25921388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute lymphoblastic leukemia cells create a leukemic niche without affecting the CXCR4/CXCL12 axis.
    de Rooij B; Polak R; van den Berk LCJ; Stalpers F; Pieters R; den Boer ML
    Haematologica; 2017 Oct; 102(10):e389-e393. PubMed ID: 28619846
    [No Abstract]   [Full Text] [Related]  

  • 17. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment.
    Skroblyn T; Joedicke JJ; Pfau M; Krüger K; Bourquin JP; Izraeli S; Eckert C; Höpken UE
    J Pathol; 2022 Sep; 258(1):12-25. PubMed ID: 35522562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of CXCL12 in tumor microenvironment.
    Meng W; Xue S; Chen Y
    Gene; 2018 Jan; 641():105-110. PubMed ID: 29017963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression.
    Tsaouli G; Ferretti E; Bellavia D; Vacca A; Felli MP
    J Immunol Res; 2019; 2019():5601396. PubMed ID: 31346528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia.
    Pan C; Liu P; Ma D; Zhang S; Ni M; Fang Q; Wang J
    Biomed Pharmacother; 2020 Oct; 130():110610. PubMed ID: 34321159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.