These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 33743810)

  • 1. Targeting chemokines for acute lymphoblastic leukemia therapy.
    Hong Z; Wei Z; Xie T; Fu L; Sun J; Zhou F; Jamal M; Zhang Q; Shao L
    J Hematol Oncol; 2021 Mar; 14(1):48. PubMed ID: 33743810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy.
    Han TT; Fan L; Li JY; Xu W
    Cancer Biol Ther; 2014 Jan; 15(1):3-9. PubMed ID: 24149438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.
    Chiarini F; Lonetti A; Evangelisti C; Buontempo F; Orsini E; Evangelisti C; Cappellini A; Neri LM; McCubrey JA; Martelli AM
    Biochim Biophys Acta; 2016 Mar; 1863(3):449-463. PubMed ID: 26334291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma.
    Barbieri F; Bajetto A; Thellung S; Würth R; Florio T
    Expert Opin Drug Discov; 2016 Nov; 11(11):1093-1109. PubMed ID: 27598329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies.
    Peled A; Klein S; Beider K; Burger JA; Abraham M
    Cytokine; 2018 Sep; 109():11-16. PubMed ID: 29903571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment.
    Scala S
    Clin Cancer Res; 2015 Oct; 21(19):4278-85. PubMed ID: 26199389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs.
    Gómez AM; Martínez C; González M; Luque A; Melen GJ; Martínez J; Hortelano S; Lassaletta Á; Madero L; Ramírez M
    Blood Cells Mol Dis; 2015 Oct; 55(3):220-7. PubMed ID: 26227851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target.
    de Lourdes Perim A; Amarante MK; Guembarovski RL; de Oliveira CE; Watanabe MA
    Cell Mol Life Sci; 2015 May; 72(9):1715-23. PubMed ID: 25572297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotactic Cues for NOTCH1-Dependent Leukemia.
    Piovan E; Tosello V; Amadori A; Zanovello P
    Front Immunol; 2018; 9():633. PubMed ID: 29666622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia.
    van den Berk LC; van der Veer A; Willemse ME; Theeuwes MJ; Luijendijk MW; Tong WH; van der Sluis IM; Pieters R; den Boer ML
    Br J Haematol; 2014 Jul; 166(2):240-9. PubMed ID: 24697337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment.
    Juarez J; Dela Pena A; Baraz R; Hewson J; Khoo M; Cisterne A; Fricker S; Fujii N; Bradstock KF; Bendall LJ
    Leukemia; 2007 Jun; 21(6):1249-57. PubMed ID: 17410186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia?
    Tavor S; Petit I
    Semin Cancer Biol; 2010 Jun; 20(3):178-85. PubMed ID: 20637871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of CXCR4 in the progression and therapy of acute leukaemia.
    Su L; Hu Z; Yang YG
    Cell Prolif; 2021 Jul; 54(7):e13076. PubMed ID: 34050566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemosensitivity is differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes in acute lymphoblastic leukemia with MLL gene rearrangements.
    Ando N; Furuichi Y; Kasai S; Tamai M; Harama D; Kagami K; Abe M; Goi K; Inukai T; Sugita K
    Leuk Res; 2018 Dec; 75():36-44. PubMed ID: 30453100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the microenvironment in acute myeloid leukemia.
    Rashidi A; Uy GL
    Curr Hematol Malig Rep; 2015 Jun; 10(2):126-31. PubMed ID: 25921388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute lymphoblastic leukemia cells create a leukemic niche without affecting the CXCR4/CXCL12 axis.
    de Rooij B; Polak R; van den Berk LCJ; Stalpers F; Pieters R; den Boer ML
    Haematologica; 2017 Oct; 102(10):e389-e393. PubMed ID: 28619846
    [No Abstract]   [Full Text] [Related]  

  • 17. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment.
    Skroblyn T; Joedicke JJ; Pfau M; Krüger K; Bourquin JP; Izraeli S; Eckert C; Höpken UE
    J Pathol; 2022 Sep; 258(1):12-25. PubMed ID: 35522562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of CXCL12 in tumor microenvironment.
    Meng W; Xue S; Chen Y
    Gene; 2018 Jan; 641():105-110. PubMed ID: 29017963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression.
    Tsaouli G; Ferretti E; Bellavia D; Vacca A; Felli MP
    J Immunol Res; 2019; 2019():5601396. PubMed ID: 31346528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia.
    Pan C; Liu P; Ma D; Zhang S; Ni M; Fang Q; Wang J
    Biomed Pharmacother; 2020 Oct; 130():110610. PubMed ID: 34321159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.