These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33743817)

  • 1. Molecular optimization by capturing chemist's intuition using deep neural networks.
    He J; You H; Sandström E; Nittinger E; Bjerrum EJ; Tyrchan C; Czechtizky W; Engkvist O
    J Cheminform; 2021 Mar; 13(1):26. PubMed ID: 33743817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer-based molecular optimization beyond matched molecular pairs.
    He J; Nittinger E; Tyrchan C; Czechtizky W; Patronov A; Bjerrum EJ; Engkvist O
    J Cheminform; 2022 Mar; 14(1):18. PubMed ID: 35346368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformer-based deep learning method for optimizing ADMET properties of lead compounds.
    Yang L; Jin C; Yang G; Bing Z; Huang L; Niu Y; Yang L
    Phys Chem Chem Phys; 2023 Jan; 25(3):2377-2385. PubMed ID: 36597997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of reinforcement learning in transformer-based molecular design.
    He J; Tibo A; Janet JP; Nittinger E; Tyrchan C; Czechtizky W; Engkvist O
    J Cheminform; 2024 Aug; 16(1):95. PubMed ID: 39118113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecule generation using transformers and policy gradient reinforcement learning.
    Mazuz E; Shtar G; Shapira B; Rokach L
    Sci Rep; 2023 May; 13(1):8799. PubMed ID: 37258546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformer neural network for protein-specific de novo drug generation as a machine translation problem.
    Grechishnikova D
    Sci Rep; 2021 Jan; 11(1):321. PubMed ID: 33432013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep scaffold hopping with multimodal transformer neural networks.
    Zheng S; Lei Z; Ai H; Chen H; Deng D; Yang Y
    J Cheminform; 2021 Nov; 13(1):87. PubMed ID: 34774103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Molecule Generator for Optimizing Multiple Chemical Properties.
    Shin B; Park S; Bak J; Ho JC
    ACM CHIL 2021 (2021); 2021 Apr; 2021():146-153. PubMed ID: 35194593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation.
    Wei Y; Li S; Li Z; Wan Z; Lin J
    Bioinformatics; 2022 May; 38(10):2863-2871. PubMed ID: 35561160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular language models: RNNs or transformer?
    Chen Y; Wang Z; Zeng X; Li Y; Li P; Ye X; Sakurai T
    Brief Funct Genomics; 2023 Jul; 22(4):392-400. PubMed ID: 37078726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds.
    Yi J; Shi S; Fu L; Yang Z; Nie P; Lu A; Wu C; Deng Y; Hsieh C; Zeng X; Hou T; Cao D
    Nat Protoc; 2024 Apr; 19(4):1105-1121. PubMed ID: 38263521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metis: a python-based user interface to collect expert feedback for generative chemistry models.
    Menke J; Nahal Y; Bjerrum EJ; Kabeshov M; Kaski S; Engkvist O
    J Cheminform; 2024 Aug; 16(1):100. PubMed ID: 39143631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting medicinal chemistry intuition via preference machine learning.
    Choung OH; Vianello R; Segler M; Stiefl N; Jiménez-Luna J
    Nat Commun; 2023 Oct; 14(1):6651. PubMed ID: 37907461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MERMAID: an open source automated hit-to-lead method based on deep reinforcement learning.
    Erikawa D; Yasuo N; Sekijima M
    J Cheminform; 2021 Nov; 13(1):94. PubMed ID: 34838134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient multi-objective molecular optimization in a continuous latent space.
    Winter R; Montanari F; Steffen A; Briem H; Noé F; Clevert DA
    Chem Sci; 2019 Sep; 10(34):8016-8024. PubMed ID: 31853357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ensemble Structure and Physicochemical (SPOC) Descriptor for Machine-Learning Prediction of Chemical Reaction and Molecular Properties.
    Yang Q; Liu Y; Cheng J; Li Y; Liu S; Duan Y; Zhang L; Luo S
    Chemphyschem; 2022 Jul; 23(14):e202200255. PubMed ID: 35478429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MolGPT: Molecular Generation Using a Transformer-Decoder Model.
    Bagal V; Aggarwal R; Vinod PK; Priyakumar UD
    J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.