These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 33744200)

  • 1. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases.
    Kehm R; Baldensperger T; Raupbach J; Höhn A
    Redox Biol; 2021 Jun; 42():101901. PubMed ID: 33744200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection, identification, and quantification of oxidative protein modifications.
    Hawkins CL; Davies MJ
    J Biol Chem; 2019 Dec; 294(51):19683-19708. PubMed ID: 31672919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease.
    Moreira PI; Sayre LM; Zhu X; Nunomura A; Smith MA; Perry G
    Methods Mol Biol; 2010; 610():419-34. PubMed ID: 20013193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoxidation in cardiovascular diseases.
    Gianazza E; Brioschi M; Fernandez AM; Banfi C
    Redox Biol; 2019 May; 23():101119. PubMed ID: 30833142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarkers of protein oxidation in human disease.
    Garcia-Garcia A; Rodriguez-Rocha H; Madayiputhiya N; Pappa A; Panayiotidis MI; Franco R
    Curr Mol Med; 2012 Jul; 12(6):681-97. PubMed ID: 22292436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?
    Domingues RM; Domingues P; Melo T; Pérez-Sala D; Reis A; Spickett CM
    J Proteomics; 2013 Oct; 92():110-31. PubMed ID: 23770299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative modification of proteins: age-related changes.
    Chakravarti B; Chakravarti DN
    Gerontology; 2007; 53(3):128-39. PubMed ID: 17164550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification and significance of protein oxidation in biological samples.
    Shacter E
    Drug Metab Rev; 2000; 32(3-4):307-26. PubMed ID: 11139131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of methionine sulfoxide during glycoxidation and lipoxidation of ribonuclease A.
    Brock JW; Ames JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 2007 Jan; 457(2):170-6. PubMed ID: 17141728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond.
    Demasi M; Augusto O; Bechara EJH; Bicev RN; Cerqueira FM; da Cunha FM; Denicola A; Gomes F; Miyamoto S; Netto LES; Randall LM; Stevani CV; Thomson L
    Antioxid Redox Signal; 2021 Oct; 35(12):1016-1080. PubMed ID: 33726509
    [No Abstract]   [Full Text] [Related]  

  • 14. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular chaperones and proteostasis regulation during redox imbalance.
    Niforou K; Cheimonidou C; Trougakos IP
    Redox Biol; 2014; 2():323-32. PubMed ID: 24563850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of protein modification by oxidants.
    Hawkins CL; Morgan PE; Davies MJ
    Free Radic Biol Med; 2009 Apr; 46(8):965-88. PubMed ID: 19439229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress of oxidative stress associated biomarker detection.
    Li J; Pan L; Pan W; Li N; Tang B
    Chem Commun (Camb); 2023 Jun; 59(48):7361-7374. PubMed ID: 37194341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of reactive oxygen and nitrogen species with proteins].
    Ponczek MB; Wachowicz B
    Postepy Biochem; 2005; 51(2):140-5. PubMed ID: 16209351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.