These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33744249)

  • 1. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers.
    Abid U; Gill YQ; Irfan MS; Umer R; Saeed F
    Int J Biol Macromol; 2021 Jun; 181():1-29. PubMed ID: 33744249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites.
    Huang J; Liu W; Qiu X; Tu Z; Li J; Lou H
    Int J Biol Macromol; 2021 Jul; 183():1450-1458. PubMed ID: 33974926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions.
    Sun N; Di M; Liu Y
    Int J Biol Macromol; 2021 Aug; 184():1-8. PubMed ID: 34118286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin-derivatives based polymers, blends and composites: A review.
    Naseem A; Tabasum S; Zia KM; Zuber M; Ali M; Noreen A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):296-313. PubMed ID: 27521847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers.
    Wang H; Liu W; Huang J; Yang D; Qiu X
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber.
    Jiang C; Bo J; Xiao X; Zhang S; Wang Z; Yan G; Wu Y; Wong C; He H
    Waste Manag; 2020 Feb; 102():732-742. PubMed ID: 31805446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of lignin/nano graphene oxide/styrene butadiene rubber composite for automobile tyre application.
    Khan A; Kian LK; Jawaid M; Khan AAP; Marwani HM; Alotaibi MM; Asiri AM
    Int J Biol Macromol; 2022 May; 206():363-370. PubMed ID: 35240212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional MgO-Lignin Hybrids and Their Application as Fillers for Polypropylene Composites.
    Grząbka-Zasadzińska A; Klapiszewski Ł; Jesionowski T; Borysiak S
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin-Based Polyurethane: Recent Advances and Future Perspectives.
    Ma X; Chen J; Zhu J; Yan N
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000492. PubMed ID: 33205584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials.
    Asgher M; Qamar SA; Bilal M; Iqbal HMN
    Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-absorbent lignin-based multi-arm star thermoplastic elastomers.
    Yu J; Wang J; Wang C; Liu Y; Xu Y; Tang C; Chu F
    Macromol Rapid Commun; 2015 Feb; 36(4):398-404. PubMed ID: 25545630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials.
    Komisarz K; Majka TM; Pielichowski K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-Based Thermoplastic Materials.
    Wang C; Kelley SS; Venditti RA
    ChemSusChem; 2016 Apr; 9(8):770-83. PubMed ID: 27059111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions.
    Zhang G; Tian C; Shi J; Zhang X; Liu J; Tan T; Zhang L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38216-38227. PubMed ID: 35950777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin.
    Huang J; Wang H; Liu W; Huang J; Yang D; Qiu X; Zhao L; Hu F; Feng Y
    Int J Biol Macromol; 2023 Jan; 225():1505-1516. PubMed ID: 36435459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards lignin derived thermoplastic polymers.
    Parit M; Jiang Z
    Int J Biol Macromol; 2020 Dec; 165(Pt B):3180-3197. PubMed ID: 33065157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol formaldehyde resin modified by cellulose and lignin nanomaterials: Review and recent progress.
    Dorieh A; Ayrilmis N; Farajollah Pour M; Ghafari Movahed S; Valizadeh Kiamahalleh M; Shahavi MH; Hatefnia H; Mehdinia M
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1888-1907. PubMed ID: 36208814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Oxide Filled Lignin/Starch Polymer Bionanocomposite: Structural, Physical, and Mechanical Studies.
    Aqlil M; Moussemba Nzenguet A; Essamlali Y; Snik A; Larzek M; Zahouily M
    J Agric Food Chem; 2017 Dec; 65(48):10571-10581. PubMed ID: 29113432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin-based hydrogels: A review of preparation, properties, and application.
    Meng Y; Lu J; Cheng Y; Li Q; Wang H
    Int J Biol Macromol; 2019 Aug; 135():1006-1019. PubMed ID: 31154040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.