BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33744419)

  • 41. Bioinformatic Analysis of miR-200b/429 and Hub Gene Network in Cervical Cancer.
    Shukla V; Mallya S; Adiga D; Sriharikrishnaa S; Chakrabarty S; Kabekkodu SP
    Biochem Genet; 2023 Oct; 61(5):1898-1916. PubMed ID: 36879084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas.
    Hiroki E; Akahira J; Suzuki F; Nagase S; Ito K; Suzuki T; Sasano H; Yaegashi N
    Cancer Sci; 2010 Jan; 101(1):241-9. PubMed ID: 19891660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.
    Cava C; Bertoli G; Ripamonti M; Mauri G; Zoppis I; Della Rosa PA; Gilardi MC; Castiglioni I
    PLoS One; 2014; 9(5):e97681. PubMed ID: 24866763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Four-gene Decision Tree Signature Classification of Triple-negative Breast Cancer: Implications for Targeted Therapeutics.
    Quist J; Mirza H; Cheang MCU; Telli ML; O'Shaughnessy JA; Lord CJ; Tutt ANJ; Grigoriadis A
    Mol Cancer Ther; 2019 Jan; 18(1):204-212. PubMed ID: 30305342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TNFAIP8 Promotes Cisplatin Chemoresistance in Triple-Negative Breast Cancer by Repressing p53-Mediated miR-205-5p Expression.
    Ma HY; Li Y; Yin HZ; Yin H; Qu YY; Xu QY
    Mol Ther Nucleic Acids; 2020 Dec; 22():640-656. PubMed ID: 33230463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MicroRNAs Associated with Androgen Receptor and Metastasis in Triple-Negative Breast Cancer.
    Ahram M; Abu Alragheb B; Abushukair H; Bawadi R; Al-Hussaini M
    Cancers (Basel); 2024 Feb; 16(3):. PubMed ID: 38339416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nucleophosmin interacts with FOXM1 and modulates the level and localization of FOXM1 in human cancer cells.
    Bhat UG; Jagadeeswaran R; Halasi M; Gartel AL
    J Biol Chem; 2011 Dec; 286(48):41425-41433. PubMed ID: 21979956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis.
    Wang H
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment.
    Sueta A; Fujiki Y; Goto-Yamaguchi L; Tomiguchi M; Yamamoto-Ibusuki M; Iwase H; Yamamoto Y
    Oncol Lett; 2021 Dec; 22(6):819. PubMed ID: 34671433
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments.
    Raghuwanshi S; Gartel AL
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189015. PubMed ID: 37913940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predictive miRNAs Patterns in Blood of Breast Cancer Patients Demonstrating Resistance Towards Neoadjuvant Chemotherapy.
    Fan J; Tang Y; Wang K; Yang S; Ma B
    Breast Cancer (Dove Med Press); 2023; 15():591-604. PubMed ID: 37593370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of Forkhead Box M1 (FOXM1) and anticancer effects of FOXM1 inhibition in epithelial sarcoma.
    Shibui Y; Kohashi K; Hino Y; Tamaki A; Kinoshita I; Yamamoto H; Nakashima Y; Tajiri T; Oda Y
    Lab Invest; 2024 Jun; ():102093. PubMed ID: 38857782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lnc‑RGS5 sponges miR‑542‑5p to promote FoxM1/VEGFA signaling and breast cancer cell proliferation.
    Song J; Tang Y; Song F
    Int J Oncol; 2023 Oct; 63(4):. PubMed ID: 37594134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of transcription factor FOXA1/C2/M1/O3/P1/Q1 in breast cancer.
    Yuan H; Liang Y; Hu S; Chen J; You J; Jiang J; Luo M; Zeng M
    Medicine (Baltimore); 2024 Apr; 103(15):e37709. PubMed ID: 38608123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer.
    Yi L; Wang H; Li W; Ye K; Xiong W; Yu H; Jin X
    Cell Death Dis; 2021 Oct; 12(10):944. PubMed ID: 34650035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of cancer stemness related miRNA(s) using integrated bioinformatics analysis and in vitro validation.
    Prajapati KS; Shuaib M; Kushwaha PP; Singh AK; Kumar S
    3 Biotech; 2021 Oct; 11(10):446. PubMed ID: 34631347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of transcription factor FOXM1 in diabetes and its complications (Review).
    Zhao B; Li M; Su Y; Shan S; Qian W; Zhu D; Liu X; Zhang Z
    Int J Mol Med; 2023 Nov; 52(5):. PubMed ID: 37681487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The impact of microRNAs on the resistance of breast cancer subtypes to chemotherapy.
    Ebrahimi A; Bakhshaei Shahrebabaki P; Fouladi H; Mansoori Derakhshan S
    Pathol Res Pract; 2023 Sep; 249():154702. PubMed ID: 37562283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Expression of Hsa-Mir-1225-5p Limits the Aggressive Biological Be-haviour of Luminal Breast Cancer Cell Lines.
    Hernandez YA; Gonzalez J; Garcia R; Aristizabal-Pachón A
    Microrna; 2024 Jan; ():. PubMed ID: 38204280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FOXM1 nuclear transcription factor translocates into mitochondria and inhibits oxidative phosphorylation.
    Black M; Arumugam P; Shukla S; Pradhan A; Ustiyan V; Milewski D; Kalinichenko VV; Kalin TV
    Mol Biol Cell; 2020 Jun; 31(13):1411-1424. PubMed ID: 32348194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.