BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 33744500)

  • 1. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels.
    Rosales AM; Mabry KM; Nehls EM; Anseth KS
    Biomacromolecules; 2015 Mar; 16(3):798-806. PubMed ID: 25629423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarity Does Not Matter: Molecular Weight Reverses the Photoisomerization-Induced Phase Separation of an Azobenzene-Bearing Polymer.
    Homma K; Chang AC; Yamamoto S; Ueki T; Nakanishi J
    Macromol Rapid Commun; 2023 Jul; 44(14):e2300118. PubMed ID: 37128838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Release of Molecules upon Ultraviolet (UV) Light Irradiation from Photoresponsive Hydrogels Prepared from Bifunctional Azobenzene and Four-Arm Poly(ethylene glycol).
    Rastogi SK; Anderson HE; Lamas J; Barret S; Cantu T; Zauscher S; Brittain WJ; Betancourt T
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30071-30080. PubMed ID: 28222261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening.
    Lee IN; Dobre O; Richards D; Ballestrem C; Curran JM; Hunt JA; Richardson SM; Swift J; Wong LS
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7765-7776. PubMed ID: 29430919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers.
    Wang C; Fadeev M; Zhang J; Vázquez-González M; Davidson-Rozenfeld G; Tian H; Willner I
    Chem Sci; 2018 Sep; 9(35):7145-7152. PubMed ID: 30310637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels.
    Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM
    Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system.
    Kim Y; Jeong D; Shinde VV; Hu Y; Kim C; Jung S
    Int J Biol Macromol; 2020 Nov; 163():824-832. PubMed ID: 32653370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics.
    Tran KA; Kraus E; Clark AT; Bennett A; Pogoda K; Cheng X; Ce Bers A; Janmey PA; Galie PA
    ACS Appl Mater Interfaces; 2021 May; 13(18):20947-20959. PubMed ID: 33909398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
    Nguyen HD; Lin CC
    Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azobenzene-based light-responsive hydrogel system.
    Zhao YL; Stoddart JF
    Langmuir; 2009 Aug; 25(15):8442-6. PubMed ID: 20050041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.
    Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS
    Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling.
    Wiley KL; Sutherland BP; Ogunnaike BA; Kloxin AM
    Adv Healthc Mater; 2022 Apr; 11(7):e2101947. PubMed ID: 34936227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks.
    Accardo JV; Kalow JA
    Chem Sci; 2018 Jul; 9(27):5987-5993. PubMed ID: 30079213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition.
    Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK
    Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels.
    Hasturk O; Sahoo JK; Kaplan DL
    Polymer (Guildf); 2023 Jul; 281():. PubMed ID: 37483847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.