These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 33744530)
1. Bi Bi Y; Yang Y; Shi XL; Feng L; Hou X; Ye X; Zhang L; Suo G; Chen J; Chen ZG J Colloid Interface Sci; 2021 Jul; 593():196-203. PubMed ID: 33744530 [TBL] [Abstract][Full Text] [Related]
2. van der Waals Layered Materials: Opportunities and Challenges. Duong DL; Yun SJ; Lee YH ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304 [TBL] [Abstract][Full Text] [Related]
3. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. Slepchenkov MM; Kolosov DA; Glukhova OE Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141 [TBL] [Abstract][Full Text] [Related]
4. Modified 2D-2D ZnIn Jiang R; Wu D; Lu G; Yan Z; Liu J Chemosphere; 2019 Jul; 227():82-92. PubMed ID: 30986605 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear Optical Response in Graphene/WX He C; Zhao Q; Huang Y; Zhu L; Zhang S; Bai J; Xu X J Phys Chem Lett; 2019 May; 10(9):2090-2100. PubMed ID: 30973733 [TBL] [Abstract][Full Text] [Related]
6. 3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Tang C; Zhong L; Zhang B; Wang HF; Zhang Q Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226394 [TBL] [Abstract][Full Text] [Related]
7. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730 [TBL] [Abstract][Full Text] [Related]
8. Printable Transfer-Free and Wafer-Size MoS Liu Q; Cook B; Gong M; Gong Y; Ewing D; Casper M; Stramel A; Wu J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12728-12733. PubMed ID: 28322041 [TBL] [Abstract][Full Text] [Related]
9. Identifying the Origin of Thermal Modulation of Exchange Bias in MnPS Puthirath Balan A; Kumar A; Reiser P; Vimal Vas J; Denneulin T; Lee KD; Saunderson TG; Tschudin M; Pellet-Mary C; Dutta D; Schrader C; Scholz T; Geuchies J; Fu S; Wang H; Bonanni A; Lotsch BV; Nowak U; Jakob G; Gayles J; Kovacs A; Dunin-Borkowski RE; Maletinsky P; Kläui M Adv Mater; 2024 Aug; 36(35):e2403685. PubMed ID: 38994679 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of AAB-Stacked Single-Crystal Graphene/hBN/Graphene Trilayer van der Waals Heterostructures by In Situ CVD. Tian B; Li J; Chen M; Dong H; Zhang X Adv Sci (Weinh); 2022 Jul; 9(21):e2201324. PubMed ID: 35618473 [TBL] [Abstract][Full Text] [Related]
11. Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. Taniguchi T; Li S; Nurdiwijayanto L; Kobayashi Y; Saito T; Miyata Y; Obata S; Saiki K; Yokoi H; Watanabe K; Taniguchi T; Tsukagoshi K; Ebina Y; Sasaki T; Osada M ACS Nano; 2019 Oct; 13(10):11214-11223. PubMed ID: 31580052 [TBL] [Abstract][Full Text] [Related]
12. van der Waals Integrated Devices Based on Nanomembranes of 3D Materials. Liu Y; Wang P; Wang Y; Lin Z; Liu H; Huang J; Huang Y; Duan X Nano Lett; 2020 Feb; 20(2):1410-1416. PubMed ID: 31972081 [TBL] [Abstract][Full Text] [Related]
13. A π-Conjugated Van der Waals Heterostructure Between Single-Atom Ni-Anchored Salphen-Based Covalent Organic Framework and Polymeric Carbon Nitride for High-Efficiency Interfacial Charge Separation. Zhu L; Liang Z; Li H; Xu Q; Jiang D; Du H; Zhu C; Li H; Lu Z; Yuan Y Small; 2023 Aug; 19(33):e2301017. PubMed ID: 37066713 [TBL] [Abstract][Full Text] [Related]
14. Controllable Magnetic Proximity Effect and Charge Transfer in 2D Semiconductor and Double-Layered Perovskite Manganese Oxide van der Waals Heterostructure. Zhang Y; Shinokita K; Watanabe K; Taniguchi T; Goto M; Kan D; Shimakawa Y; Moritomo Y; Nishihara T; Miyauchi Y; Matsuda K Adv Mater; 2020 Dec; 32(50):e2003501. PubMed ID: 33118213 [TBL] [Abstract][Full Text] [Related]
15. Van der Waals Heterostructures-Recent Progress in Electrode Materials for Clean Energy Applications. Blackstone C; Ignaszak A Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279324 [TBL] [Abstract][Full Text] [Related]
16. Probing van der Waals interactions at two-dimensional heterointerfaces. Li B; Yin J; Liu X; Wu H; Li J; Li X; Guo W Nat Nanotechnol; 2019 Jun; 14(6):567-572. PubMed ID: 30911164 [TBL] [Abstract][Full Text] [Related]
17. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures. Wu H; Liu X; Zhu K; Huang Y Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111010 [TBL] [Abstract][Full Text] [Related]
18. Twinned Growth of Metal-Free, Triazine-Based Photocatalyst Films as Mixed-Dimensional (2D/3D) van der Waals Heterostructures. Schwarz D; Noda Y; Klouda J; Schwarzová-Pecková K; Tarábek J; Rybáček J; Janoušek J; Simon F; Opanasenko MV; Čejka J; Acharjya A; Schmidt J; Selve S; Reiter-Scherer V; Severin N; Rabe JP; Ecorchard P; He J; Polozij M; Nachtigall P; Bojdys MJ Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28859235 [TBL] [Abstract][Full Text] [Related]
19. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]