These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 33744530)
21. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400 [TBL] [Abstract][Full Text] [Related]
22. Construction of 2D/2D BiVO Sun Z; Yu Z; Liu Y; Shi C; Zhu M; Wang A J Colloid Interface Sci; 2019 Jan; 533():251-258. PubMed ID: 30165302 [TBL] [Abstract][Full Text] [Related]
23. Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. Li H; Xiong X; Hui F; Yang D; Jiang J; Feng W; Han J; Duan J; Wang Z; Sun L Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35313295 [TBL] [Abstract][Full Text] [Related]
24. Dynamics of Antimonene-Graphene Van Der Waals Growth. Fortin-Deschênes M; Jacobberger RM; Deslauriers CA; Waller O; Bouthillier É; Arnold MS; Moutanabbir O Adv Mater; 2019 May; 31(21):e1900569. PubMed ID: 30968486 [TBL] [Abstract][Full Text] [Related]
25. Versatile construction of van der Waals heterostructures using a dual-function polymeric film. Huang Z; Alharbi A; Mayer W; Cuniberto E; Taniguchi T; Watanabe K; Shabani J; Shahrjerdi D Nat Commun; 2020 Jun; 11(1):3029. PubMed ID: 32541673 [TBL] [Abstract][Full Text] [Related]
26. van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting. Idrees M; Nguyen CV; Bui HD; Ahmad I; Amin B Phys Chem Chem Phys; 2020 Sep; 22(36):20704-20711. PubMed ID: 32901640 [TBL] [Abstract][Full Text] [Related]
27. Tunable band gaps in graphene/GaN van der Waals heterostructures. Huang L; Yue Q; Kang J; Li Y; Li J J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081 [TBL] [Abstract][Full Text] [Related]
28. Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy. Gogoi PK; Lin YC; Senga R; Komsa HP; Wong SL; Chi D; Krasheninnikov AV; Li LJ; Breese MBH; Pennycook SJ; Wee ATS; Suenaga K ACS Nano; 2019 Aug; 13(8):9541-9550. PubMed ID: 31345026 [TBL] [Abstract][Full Text] [Related]
29. Mixed-dimensional van der Waals heterostructures. Jariwala D; Marks TJ; Hersam MC Nat Mater; 2017 Feb; 16(2):170-181. PubMed ID: 27479211 [TBL] [Abstract][Full Text] [Related]
30. Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS Kang S; Kim YS; Jeong JH; Kwon J; Kim JH; Jung Y; Kim JC; Kim B; Bae SH; Huang PY; Hone JC; Jeong HY; Park JW; Lee CH; Lee GH ACS Appl Mater Interfaces; 2021 Jan; 13(1):1245-1252. PubMed ID: 33356110 [TBL] [Abstract][Full Text] [Related]
31. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures. Lee JY; Shin JH; Lee GH; Lee CH Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321 [TBL] [Abstract][Full Text] [Related]
32. Fano Resonance and Incoherent Interlayer Excitons in Molecular van der Waals Heterostructures. Lien-Medrano CR; Bonafé FP; Yam CY; Palma CA; Sánchez CG; Frauenheim T Nano Lett; 2022 Feb; 22(3):911-917. PubMed ID: 35040646 [TBL] [Abstract][Full Text] [Related]
33. Mixed-Dimensional van der Waals Heterostructures for Boosting Electricity Generation. Kong H; Yao H; Li Y; Wang Q; Qiu X; Yan J; Zhu J; Wang Y ACS Nano; 2023 Sep; 17(18):18456-18469. PubMed ID: 37698581 [TBL] [Abstract][Full Text] [Related]
34. Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures. Zhao SYF; Elbaz GA; Bediako DK; Yu C; Efetov DK; Guo Y; Ravichandran J; Min KA; Hong S; Taniguchi T; Watanabe K; Brus LE; Roy X; Kim P Nano Lett; 2018 Jan; 18(1):460-466. PubMed ID: 29268017 [TBL] [Abstract][Full Text] [Related]
35. First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers. Alam Q; Muhammad S; Idrees M; Hieu NV; Binh NTT; Nguyen C; Amin B RSC Adv; 2021 Apr; 11(24):14263-14268. PubMed ID: 35423989 [TBL] [Abstract][Full Text] [Related]
36. Lateral Heterostructures of Multilayer GeS and SnS van der Waals Crystals. Sutter E; Wang J; Sutter P ACS Nano; 2020 Sep; 14(9):12248-12255. PubMed ID: 32886477 [TBL] [Abstract][Full Text] [Related]
37. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. He J; Kumar N; Bellus MZ; Chiu HY; He D; Wang Y; Zhao H Nat Commun; 2014 Nov; 5():5622. PubMed ID: 25421098 [TBL] [Abstract][Full Text] [Related]
38. Optically Active MXenes in Van der Waals Heterostructures. Purbayanto MAK; Chandel M; Birowska M; Rosenkranz A; Jastrzębska AM Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336 [TBL] [Abstract][Full Text] [Related]
39. Excitonic Effect Drives Ultrafast Dynamics in van der Waals Heterostructures. Liu J; Zhang X; Lu G Nano Lett; 2020 Jun; 20(6):4631-4637. PubMed ID: 32432887 [TBL] [Abstract][Full Text] [Related]