These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33744552)

  • 41. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification.
    Lu Y; Yuan W
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29167-29176. PubMed ID: 28796484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation.
    Zhao J; Chen H; Ye H; Zhang B; Xu L
    Soft Matter; 2019 Dec; 15(45):9224-9232. PubMed ID: 31647491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Performance Graphene Sponges Reinforced with Polyimide for Room-Temperature Piezoresistive Sensing.
    Huang J; Wang J; Yang Z; Yang S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8180-8189. PubMed ID: 29417809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water.
    Lu Y; Yuan W
    Carbohydr Polym; 2018 Jul; 191():86-94. PubMed ID: 29661326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents.
    Guan H; Cheng Z; Wang X
    ACS Nano; 2018 Oct; 12(10):10365-10373. PubMed ID: 30272949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resilient and Antipuncturing Si
    Li M; Xiao L; Guo P; Ni H; Lu D; Xu L; Wang L; Zhang J; Su L; Wang H
    Nano Lett; 2023 Feb; 23(4):1289-1297. PubMed ID: 36749085
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shapeable, Underwater Superelastic, and Highly Phosphorylated Nanofibrous Aerogels for Large-Capacity and High-Throughput Protein Separation.
    Fu Q; Liu L; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44874-44885. PubMed ID: 31670935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds.
    Xu T; Wang Z; Ding Y; Xu W; Wu W; Zhu Z; Fong H
    Carbohydr Polym; 2018 Jan; 179():164-172. PubMed ID: 29111039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance.
    Shen L; Zhang H; Lei Y; Chen Y; Liang M; Zou H
    Carbohydr Polym; 2021 Mar; 255():117405. PubMed ID: 33436229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials.
    Lu Y; Wang Y; Liu L; Yuan W
    Carbohydr Polym; 2017 Oct; 173():422-430. PubMed ID: 28732884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations.
    Guo J; Fang Y; Qu R; Liu Q; Zhang X
    J Acoust Soc Am; 2021 Aug; 150(2):1370. PubMed ID: 34470319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO
    Li Y; Guo A; Xu X; Xue Y; Yan L; Hou F; Liu J
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.
    Kalinova K
    Recent Pat Nanotechnol; 2015; 9(1):61-9. PubMed ID: 25986230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Porous sound-absorbing materials prepared from fly ash.
    Qi L; Xu J; Liu K
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22264-22272. PubMed ID: 31152428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels.
    Liu J; Zhang HB; Xie X; Yang R; Liu Z; Liu Y; Yu ZZ
    Small; 2018 Nov; 14(45):e1802479. PubMed ID: 30295015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials.
    Pham VH; Dickerson JH
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14181-8. PubMed ID: 25039789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance enhancement of polyurethane foam applied to optical fiber microphones.
    Zhang L; Song Q; Lai X; Ma Y; Xiao Q; Jia B
    Appl Opt; 2022 May; 61(15):4322-4328. PubMed ID: 36256268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation.
    Zhao X; Luo Y; Tan P; Liu M; Zhou C
    Int J Biol Macromol; 2019 Jul; 132():406-415. PubMed ID: 30936014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study.
    Imani R; Rafienia M; Emami SH
    Biomed Mater Eng; 2013; 23(3):211-24. PubMed ID: 23629534
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Paraffin Oil Based Soft-Template Approach to Fabricate Reusable Porous PDMS Sponge for Effective Oil/Water Separation.
    Zhang L; Zhang Y; Chen P; Du W; Feng X; Liu BF
    Langmuir; 2019 Aug; 35(34):11123-11131. PubMed ID: 31369286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.