These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33744564)
1. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Zhao X; Taheripour F; Malina R; Staples MD; Tyner WE Sci Total Environ; 2021 Jul; 779():146238. PubMed ID: 33744564 [TBL] [Abstract][Full Text] [Related]
2. US biofuel production and policy: implications for land use changes in Malaysia and Indonesia. Taheripour F; Tyner WE Biotechnol Biofuels; 2020; 13():11. PubMed ID: 31988663 [TBL] [Abstract][Full Text] [Related]
3. Spatially-explicit land use change emissions and carbon payback times of biofuels under the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Escobar N; Seber G; Skalsky R; Wögerer M; Jung M; Malina R Sci Total Environ; 2024 Oct; 948():174635. PubMed ID: 38997024 [TBL] [Abstract][Full Text] [Related]
4. Civil aviation emissions in Argentina. Puliafito SE Sci Total Environ; 2023 Apr; 869():161675. PubMed ID: 36669658 [TBL] [Abstract][Full Text] [Related]
5. Spatially Varying Costs of GHG Abatement with Alternative Cellulosic Feedstocks for Sustainable Aviation Fuels. Fan X; Khanna M; Lee Y; Kent J; Shi R; Guest JS; Lee D Environ Sci Technol; 2024 Jul; 58(26):11352-11362. PubMed ID: 38899559 [TBL] [Abstract][Full Text] [Related]
6. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Khanna M; Crago CL; Black M Interface Focus; 2011 Apr; 1(2):233-47. PubMed ID: 22482030 [TBL] [Abstract][Full Text] [Related]
7. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization. Jing L; El-Houjeiri HM; Monfort JC; Littlefield J; Al-Qahtani A; Dixit Y; Speth RL; Brandt AR; Masnadi MS; MacLean HL; Peltier W; Gordon D; Bergerson JA Nat Commun; 2022 Dec; 13(1):7853. PubMed ID: 36543764 [TBL] [Abstract][Full Text] [Related]
8. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Plevin RJ; Beckman J; Golub AA; Witcover J; O'Hare M Environ Sci Technol; 2015 Mar; 49(5):2656-64. PubMed ID: 25622072 [TBL] [Abstract][Full Text] [Related]
9. Assessing the particulate matter emission reduction characteristics of small turbofan engine fueled with 100 % HEFA sustainable aviation fuel. Xu Z; Wang M; Chang L; Pan K; Shen X; Zhong S; Xu J; Liu L; Li G; Chen L Sci Total Environ; 2024 Oct; 945():174128. PubMed ID: 38908593 [TBL] [Abstract][Full Text] [Related]
10. Life-cycle analysis of bio-based aviation fuels. Han J; Elgowainy A; Cai H; Wang MQ Bioresour Technol; 2013 Dec; 150():447-56. PubMed ID: 23978607 [TBL] [Abstract][Full Text] [Related]
11. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Dunn JB; Mueller S; Kwon HY; Wang MQ Biotechnol Biofuels; 2013 Apr; 6(1):51. PubMed ID: 23575438 [TBL] [Abstract][Full Text] [Related]
12. Peatland Loss in Southeast Asia Contributing to U.S. Biofuel's Greenhouse Gas Emissions. Zhu Y; Xu Y; Deng X; Kwon H; Qin Z Environ Sci Technol; 2022 Sep; 56(18):13284-13293. PubMed ID: 36040952 [TBL] [Abstract][Full Text] [Related]
13. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. Chen R; Qin Z; Han J; Wang M; Taheripour F; Tyner W; O'Connor D; Duffield J Bioresour Technol; 2018 Mar; 251():249-258. PubMed ID: 29287277 [TBL] [Abstract][Full Text] [Related]
14. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains. Sanchez ST; Woods J; Akhurst M; Brander M; O'Hare M; Dawson TP; Edwards R; Liska AJ; Malpas R J R Soc Interface; 2012 Jun; 9(71):1105-19. PubMed ID: 22467143 [TBL] [Abstract][Full Text] [Related]
15. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. Han J; Tao L; Wang M Biotechnol Biofuels; 2017; 10():21. PubMed ID: 28138339 [TBL] [Abstract][Full Text] [Related]
16. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels. Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375 [TBL] [Abstract][Full Text] [Related]
17. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013 [TBL] [Abstract][Full Text] [Related]
18. The impact of considering land intensification and updated data on biofuels land use change and emissions estimates. Taheripour F; Zhao X; Tyner WE Biotechnol Biofuels; 2017; 10():191. PubMed ID: 28736576 [TBL] [Abstract][Full Text] [Related]
19. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production. Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031 [TBL] [Abstract][Full Text] [Related]
20. Wastewater-grown microalgae biomass as a source of sustainable aviation fuel: Life cycle assessment comparing hydrothermal routes. Marangon BB; Castro JS; Assemany PP; Machado NA; Calijuri ML J Environ Manage; 2024 Jun; 360():121164. PubMed ID: 38768524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]