BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33744564)

  • 1. Estimating induced land use change emissions for sustainable aviation biofuel pathways.
    Zhao X; Taheripour F; Malina R; Staples MD; Tyner WE
    Sci Total Environ; 2021 Jul; 779():146238. PubMed ID: 33744564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. US biofuel production and policy: implications for land use changes in Malaysia and Indonesia.
    Taheripour F; Tyner WE
    Biotechnol Biofuels; 2020; 13():11. PubMed ID: 31988663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Civil aviation emissions in Argentina.
    Puliafito SE
    Sci Total Environ; 2023 Apr; 869():161675. PubMed ID: 36669658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially Varying Costs of GHG Abatement with Alternative Cellulosic Feedstocks for Sustainable Aviation Fuels.
    Fan X; Khanna M; Lee Y; Kent J; Shi R; Guest JS; Lee D
    Environ Sci Technol; 2024 Jul; 58(26):11352-11362. PubMed ID: 38899559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy.
    Khanna M; Crago CL; Black M
    Interface Focus; 2011 Apr; 1(2):233-47. PubMed ID: 22482030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization.
    Jing L; El-Houjeiri HM; Monfort JC; Littlefield J; Al-Qahtani A; Dixit Y; Speth RL; Brandt AR; Masnadi MS; MacLean HL; Peltier W; Gordon D; Bergerson JA
    Nat Commun; 2022 Dec; 13(1):7853. PubMed ID: 36543764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change.
    Plevin RJ; Beckman J; Golub AA; Witcover J; O'Hare M
    Environ Sci Technol; 2015 Mar; 49(5):2656-64. PubMed ID: 25622072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the particulate matter emission reduction characteristics of small turbofan engine fueled with 100 % HEFA sustainable aviation fuel.
    Xu Z; Wang M; Chang L; Pan K; Shen X; Zhong S; Xu J; Liu L; Li G; Chen L
    Sci Total Environ; 2024 Jun; 945():174128. PubMed ID: 38908593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life-cycle analysis of bio-based aviation fuels.
    Han J; Elgowainy A; Cai H; Wang MQ
    Bioresour Technol; 2013 Dec; 150():447-56. PubMed ID: 23978607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol.
    Dunn JB; Mueller S; Kwon HY; Wang MQ
    Biotechnol Biofuels; 2013 Apr; 6(1):51. PubMed ID: 23575438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peatland Loss in Southeast Asia Contributing to U.S. Biofuel's Greenhouse Gas Emissions.
    Zhu Y; Xu Y; Deng X; Kwon H; Qin Z
    Environ Sci Technol; 2022 Sep; 56(18):13284-13293. PubMed ID: 36040952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts.
    Chen R; Qin Z; Han J; Wang M; Taheripour F; Tyner W; O'Connor D; Duffield J
    Bioresour Technol; 2018 Mar; 251():249-258. PubMed ID: 29287277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.
    Sanchez ST; Woods J; Akhurst M; Brander M; O'Hare M; Dawson TP; Edwards R; Liska AJ; Malpas R
    J R Soc Interface; 2012 Jun; 9(71):1105-19. PubMed ID: 22467143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
    Han J; Tao L; Wang M
    Biotechnol Biofuels; 2017; 10():21. PubMed ID: 28138339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids.
    Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of considering land intensification and updated data on biofuels land use change and emissions estimates.
    Taheripour F; Zhao X; Tyner WE
    Biotechnol Biofuels; 2017; 10():191. PubMed ID: 28736576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production.
    Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E
    Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wastewater-grown microalgae biomass as a source of sustainable aviation fuel: Life cycle assessment comparing hydrothermal routes.
    Marangon BB; Castro JS; Assemany PP; Machado NA; Calijuri ML
    J Environ Manage; 2024 Jun; 360():121164. PubMed ID: 38768524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways.
    Okolie JA; Awotoye D; Tabat ME; Okoye PU; Epelle EI; Ogbaga CC; Güleç F; Oboirien B
    iScience; 2023 Jun; 26(6):106944. PubMed ID: 37332608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.