These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33744580)

  • 21. Anthropogenic mercury contamination in sediments of Krka River estuary (Croatia).
    Cukrov N; Doumandji N; Garnier C; Tucaković I; Dang DH; Omanović D; Cukrov N
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7628-7638. PubMed ID: 31885069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA.
    Sherman LS; Blum JD
    Sci Total Environ; 2013 Mar; 448():163-75. PubMed ID: 23062970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.
    Reinhart BL; Kidd KA; Curry RA; O'Driscoll NJ; Pavey SA
    J Environ Sci (China); 2018 Jun; 68():41-54. PubMed ID: 29908743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes.
    Lepak RF; Janssen SE; Yin R; Krabbenhoft DP; Ogorek JM; DeWild JF; Tate MT; Holsen TM; Hurley JP
    Environ Sci Technol; 2018 Mar; 52(5):2768-2776. PubMed ID: 29444571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of nutrient loading on methylmercury availability in Long Island estuaries.
    Chen CY; Buckman KL; Shaw A; Curtis A; Taylor M; Montesdeoca M; Driscoll C
    Environ Pollut; 2021 Jan; 268(Pt B):115510. PubMed ID: 33221612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments.
    Yang S; Li P; Sun K; Wei N; Liu J; Feng X
    Water Res; 2023 Aug; 241():120150. PubMed ID: 37269625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes.
    Gentès S; Löhrer B; Legeay A; Mazel AF; Anschutz P; Charbonnier C; Tessier E; Maury-Brachet R
    Chemosphere; 2021 Mar; 267():128890. PubMed ID: 33248739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish.
    Le Croizier G; Schaal G; Point D; Le Loc'h F; Machu E; Fall M; Munaron JM; Boyé A; Walter P; Laë R; Tito De Morais L
    Sci Total Environ; 2019 Feb; 650(Pt 2):2129-2140. PubMed ID: 30290354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern U.S.
    Kwon SY; Blum JD; Chen CY; Meattey DE; Mason RP
    Environ Sci Technol; 2014 Sep; 48(17):10089-97. PubMed ID: 25116221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics.
    Kidd KA; Muir DC; Evans MS; Wang X; Whittle M; Swanson HK; Johnston T; Guildford S
    Sci Total Environ; 2012 Nov; 438():135-43. PubMed ID: 22982939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community.
    Carr MK; Jardine TD; Doig LE; Jones PD; Bharadwaj L; Tendler B; Chételat J; Cott P; Lindenschmidt KE
    Sci Total Environ; 2017 May; 586():338-346. PubMed ID: 28190573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury Isotope Variations in Lake Sediment Cores in Response to Direct Mercury Emissions from Non-Ferrous Metal Smelters and Legacy Mercury Remobilization.
    Sun R; Hintelmann H; Wiklund JA; Evans MS; Muir D; Kirk JL
    Environ Sci Technol; 2022 Jun; 56(12):8266-8277. PubMed ID: 35616385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An examination of the factors influencing the bioaccumulation of methylmercury at the base of the estuarine food web.
    Mason RP; Buckman KL; Seelen EA; Taylor VF; Chen CY
    Sci Total Environ; 2023 Aug; 886():163996. PubMed ID: 37164101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Past Use to Present Effects: Total Mercury in Crustaceans and Fish in the Inner Estuary of Paraíba do Sul River, Southeast Brazil.
    Di Beneditto APM; Kehrig HDA; Pestana IA
    Bull Environ Contam Toxicol; 2021 Jul; 107(1):124-130. PubMed ID: 33704548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant.
    Kopec AD; Kidd KA; Fisher NS; Bowen M; Francis C; Payne K; Bodaly RA
    Sci Total Environ; 2019 Feb; 649():770-791. PubMed ID: 30176487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isotopes and otolith chemistry provide insight into the biogeochemical history of mercury in southern flounder across a salinity gradient.
    Sackett DK; Chrisp JK; Farmer TM
    Environ Sci Process Impacts; 2024 Feb; 26(2):233-246. PubMed ID: 38284178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes.
    Qu P; Pang M; Wang P; Ma X; Zhang Z; Wang Z; Gong Y
    J Hazard Mater; 2022 Jun; 432():128631. PubMed ID: 35306412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal trends in fish mercury concentrations in an Adirondack Lake managed with a continual predator removal program.
    Taylor MS; Driscoll CT; Lepak JM; Josephson DC; Jirka KJ; Kraft CE
    Ecotoxicology; 2020 Dec; 29(10):1762-1773. PubMed ID: 31925620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region.
    Rolfhus KR; Hall BD; Monson BA; Paterson MJ; Jeremiason JD
    Ecotoxicology; 2011 Oct; 20(7):1520-9. PubMed ID: 21735124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska.
    Burke SM; Zimmerman CE; Laske SM; Koch JC; Derry AM; Guernon S; Branfireun BA; Swanson HK
    Sci Total Environ; 2020 Nov; 743():140564. PubMed ID: 32758814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.