These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33744584)

  • 1. Revisiting the concept of 'enzymic latch' on carbon in peatlands.
    Urbanová Z; Hájek T
    Sci Total Environ; 2021 Jul; 779():146384. PubMed ID: 33744584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Between Peat Type and Microbial Ecology in Sphagnum-Containing Peatlands of the Adirondack Mountains, NY, USA.
    St James AR; Lin J; Richardson RE
    Microb Ecol; 2021 Aug; 82(2):429-441. PubMed ID: 33410936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland.
    Cory AB; Chanton JP; Spencer RGM; Ogles OC; Rich VI; McCalley CK; ; ; Wilson RM
    PLoS One; 2022; 17(2):e0252743. PubMed ID: 35108267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions.
    AminiTabrizi R; Dontsova K; Graf Grachet N; Tfaily MM
    Sci Total Environ; 2022 Jan; 804():150045. PubMed ID: 34798718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland.
    Wilson RM; Hough MA; Verbeke BA; Hodgkins SB; ; Chanton JP; Saleska SD; Rich VI; Tfaily MM
    Sci Total Environ; 2022 May; 820():152757. PubMed ID: 35031367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration.
    Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M
    Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Drainage on Peat Organic Matter: Implications for Development, Stability, and Transformation.
    Szajdak LW; Jezierski A; Wegner K; Meysner T; Szczepański M
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short period of oxygenation releases latch on peat decomposition.
    Brouns K; Verhoeven JT; Hefting MM
    Sci Total Environ; 2014 May; 481():61-8. PubMed ID: 24583945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development.
    Zhang L; Gałka M; Kumar A; Liu M; Knorr KH; Yu ZG
    Sci Total Environ; 2021 Jun; 773():143776. PubMed ID: 33261873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw.
    Heffernan L; Jassey VEJ; Frederickson M; MacKenzie MD; Olefeldt D
    Glob Chang Biol; 2021 Oct; 27(19):4711-4726. PubMed ID: 34164885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of carbon and nitrogen accumulation by vegetation in pristine bogs of southern Patagonia.
    Schuster W; Knorr KH; Blodau C; Gałka M; Borken W; Pancotto VA; Kleinebecker T
    Sci Total Environ; 2022 Mar; 810():151293. PubMed ID: 34756900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.
    Ivanova AA; Wegner CE; Kim Y; Liesack W; Dedysh SN
    Mol Ecol; 2016 Oct; 25(19):4818-35. PubMed ID: 27545292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.
    Pankratov TA; Ivanova AO; Dedysh SN; Liesack W
    Environ Microbiol; 2011 Jul; 13(7):1800-14. PubMed ID: 21564458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High nitrogen availability reduces polyphenol content in Sphagnum peat.
    Bragazza L; Freeman C
    Sci Total Environ; 2007 May; 377(2-3):439-43. PubMed ID: 17382372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of standard humic materials on relative bioavailability of NDL-PCBs in juvenile swine.
    Delannoy M; Schwarz J; Fournier A; Rychen G; Feidt C
    PLoS One; 2014; 9(12):e115759. PubMed ID: 25549096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of severe pollution from smelter emissions on carbon and metal accumulation in peatlands in Ontario, Canada.
    Newman JE; Levasseur PA; Beckett P; Watmough SA
    Environ Pollut; 2023 Mar; 320():121102. PubMed ID: 36669721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.
    Freeman C; Fenner N; Shirsat AH
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1974):4404-21. PubMed ID: 22869805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peatland microbial communities and decomposition processes in the james bay lowlands, Canada.
    Preston MD; Smemo KA; McLaughlin JW; Basiliko N
    Front Microbiol; 2012; 3():70. PubMed ID: 22393328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.
    Jassey VE; Chiapusio G; Mitchell EA; Binet P; Toussaint ML; Gilbert D
    Microb Ecol; 2011 Feb; 61(2):374-85. PubMed ID: 20938656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.