These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33744733)
1. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Nogueira EW; Gouvêa de Godoi LA; Marques Yabuki LN; Brucha G; Zamariolli Damianovic MHR Bioresour Technol; 2021 Jun; 330():124968. PubMed ID: 33744733 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Wang H; Zhang M; Dong P; Xue J; Liu L Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025 [TBL] [Abstract][Full Text] [Related]
3. Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery. Godoi LAG; Foresti E; Damianovic MHRZ J Environ Manage; 2017 Jul; 197():597-604. PubMed ID: 28431372 [TBL] [Abstract][Full Text] [Related]
4. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266 [TBL] [Abstract][Full Text] [Related]
5. Biological treatment removal of rare earth elements and yttrium (REY) and metals from actual acid mine drainage. Nogueira EW; Licona FM; Godoi LAG; Brucha G; Damianovic MHRZ Water Sci Technol; 2019 Oct; 80(8):1485-1493. PubMed ID: 31961811 [TBL] [Abstract][Full Text] [Related]
6. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Zhang M; Wang H; Han X Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913 [TBL] [Abstract][Full Text] [Related]
7. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: Performance dynamics and microbial community comparison. Chai G; Wang D; Zhang Y; Wang H; Li J; Jing X; Meng H; Wang Z; Guo Y; Jiang C; Li H; Lin Y J Environ Manage; 2023 Mar; 330():117148. PubMed ID: 36584458 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage. Dev S; Roy S; Bhattacharya J J Environ Manage; 2017 Sep; 200():135-144. PubMed ID: 28577451 [TBL] [Abstract][Full Text] [Related]
9. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
10. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related]
11. Bio-precipitation of arsenic and antimony in a sulfate-reducing bioreactor treating real acid mine drainage water. Laroche E; Joulian C; Duee C; Casiot C; Héry M; Battaglia-Brunet F FEMS Microbiol Ecol; 2023 Jul; 99(8):. PubMed ID: 37407427 [TBL] [Abstract][Full Text] [Related]
12. Arsenic removal in a sulfidogenic fixed-bed column bioreactor. Altun M; Sahinkaya E; Durukan I; Bektas S; Komnitsas K J Hazard Mater; 2014 Mar; 269():31-7. PubMed ID: 24360509 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Hwang SK; Jho EH Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584 [TBL] [Abstract][Full Text] [Related]
15. Sulfate removal rate and metal recovery as settling precipitates in bioreactors: Influence of electron donors. Costa RB; Godoi LAG; Braga AFM; Delforno TP; Bevilaqua D J Hazard Mater; 2021 Feb; 403():123622. PubMed ID: 33264855 [TBL] [Abstract][Full Text] [Related]
16. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
17. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. Wang H; Zhang M; Lv Q; Xue J; Yang J; Han X J Environ Manage; 2022 May; 310():114803. PubMed ID: 35240564 [TBL] [Abstract][Full Text] [Related]
18. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747 [TBL] [Abstract][Full Text] [Related]
19. Efficiencies of available organic mixtures for the biological treatment of highly acidic-sulphate rich drainage of the San Jose mine, Bolivia. Oporto C; Baya G; Vandecasteele C Environ Technol; 2021 Mar; 42(8):1283-1291. PubMed ID: 31496432 [TBL] [Abstract][Full Text] [Related]
20. Enhanced bioremediation of acid mine-influenced groundwater with micro-sized emulsified corn oil droplets (MOD) and sulfate-reducing bacteria (Desulfovibrio vulgaris) in a microcosm assay. Hussain F; Kim LH; Kim H; Kim Y; Oh SE; Kim S Chemosphere; 2024 Mar; 352():141403. PubMed ID: 38368967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]