These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33744733)
21. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. Sun R; Zhang L; Wang X; Ou C; Lin N; Xu S; Qiu YY; Jiang F Water Res; 2020 Oct; 185():116230. PubMed ID: 32784032 [TBL] [Abstract][Full Text] [Related]
22. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Tabak HH; Govind R Biodegradation; 2003 Dec; 14(6):437-52. PubMed ID: 14669874 [TBL] [Abstract][Full Text] [Related]
23. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. Pinto PX; Al-Abed SR; McKernan J J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728 [TBL] [Abstract][Full Text] [Related]
24. Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acidand Metal-Tolerant Sulfate-Reducer. Nguyen HT; Nguyen HL; Nguyen MH; Nguyen TKN; Dinh HT J Microbiol Biotechnol; 2020 Jul; 30(7):1005-1012. PubMed ID: 32160701 [TBL] [Abstract][Full Text] [Related]
25. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
26. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Jong T; Parry DL Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731 [TBL] [Abstract][Full Text] [Related]
27. Ferrous sulfide nanoparticles can be biosynthesized by sulfate-reducing bacteria: Synthesis, characterization and removal of heavy metals from acid mine drainage. Chen J; Gan L; Han Y; Owens G; Chen Z J Hazard Mater; 2024 Mar; 466():133622. PubMed ID: 38280317 [TBL] [Abstract][Full Text] [Related]
28. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349 [TBL] [Abstract][Full Text] [Related]
29. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor. Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506 [TBL] [Abstract][Full Text] [Related]
30. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Kieu HT; Müller E; Horn H Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086 [TBL] [Abstract][Full Text] [Related]
31. Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Hayashi K; Kobayashi M; Sakata T; Habe H J Hazard Mater; 2022 Feb; 423(Pt B):127089. PubMed ID: 34560478 [TBL] [Abstract][Full Text] [Related]
32. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Vasquez Y; Escobar MC; Neculita CM; Arbeli Z; Roldan F Chemosphere; 2016 Jun; 153():244-53. PubMed ID: 27016821 [TBL] [Abstract][Full Text] [Related]
33. Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. Zambrano-Romero A; Ramirez-Villacis DX; Trueba G; Sierra-Alvarez R; Leon-Reyes A; Cardenas P; Ochoa-Herrera V Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162506 [TBL] [Abstract][Full Text] [Related]
34. Sequential hydrotalcite precipitation, microbial sulfate reduction and in situ hydrogen sulfide removal for neutral mine drainage treatment. Cheng KY; Acuña CR; Kaksonen AH; Esslemont G; Douglas GB Sci Total Environ; 2024 May; 926():171537. PubMed ID: 38460684 [TBL] [Abstract][Full Text] [Related]
35. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872 [TBL] [Abstract][Full Text] [Related]
36. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor. Choudhary RP; Sheoran AS Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292 [TBL] [Abstract][Full Text] [Related]
38. High rate production of concentrated sulfides from metal bearing wastewater in an expanded bed hydrogenotrophic sulfate reducing bioreactor. Ostermeyer P; Van Landuyt J; Bonin L; Folens K; Williamson A; Hennebel T; Rabaey K Environ Sci Ecotechnol; 2022 Jul; 11():100173. PubMed ID: 36158753 [TBL] [Abstract][Full Text] [Related]
39. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction? Guo J; Li Y; Sun J; Sun R; Zhou S; Duan J; Feng W; Liu G; Jiang F Water Res; 2021 Oct; 204():117628. PubMed ID: 34507021 [TBL] [Abstract][Full Text] [Related]
40. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]