BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33744965)

  • 1. Bound2Learn: a machine learning approach for classification of DNA-bound proteins from single-molecule tracking experiments.
    Kapadia N; El-Hajj ZW; Reyes-Lamothe R
    Nucleic Acids Res; 2021 Aug; 49(14):e79. PubMed ID: 33744965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells.
    Uphoff S
    Methods Mol Biol; 2016; 1431():221-34. PubMed ID: 27283312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome.
    Rösch TC; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Sci Rep; 2018 Oct; 8(1):15747. PubMed ID: 30356068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells.
    Cassaro CJ; Uphoff S
    Methods Mol Biol; 2022; 2476():191-208. PubMed ID: 35635706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Abundance Prediction Through Machine Learning Methods.
    Ferreira M; Ventorim R; Almeida E; Silveira S; Silveira W
    J Mol Biol; 2021 Nov; 433(22):167267. PubMed ID: 34563548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying target sites for cooperatively binding factors.
    GuhaThakurta D; Stormo GD
    Bioinformatics; 2001 Jul; 17(7):608-21. PubMed ID: 11448879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin.
    Ball DA; Mehta GD; Salomon-Kent R; Mazza D; Morisaki T; Mueller F; McNally JG; Karpova TS
    Nucleic Acids Res; 2016 Dec; 44(21):e160. PubMed ID: 27566148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of fan-shaped tracker for single particle tracking.
    Jin L; Zhao F; Lin W; Zhou X; Kuang C; Nedzved A; Ablameyko S; Liu X; Xu Y
    Microsc Res Tech; 2020 Sep; 83(9):1056-1065. PubMed ID: 32324946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule kinetic locking allows fluorescence-free quantification of protein/nucleic-acid binding.
    Rieu M; Valle-Orero J; Ducos B; Allemand JF; Croquette V
    Commun Biol; 2021 Sep; 4(1):1083. PubMed ID: 34526657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of Computational Approaches for Prediction of DNA-Binding Residues on Protein Surfaces.
    Xiong Y; Zhu X; Dai H; Wei DQ
    Methods Mol Biol; 2018; 1754():223-234. PubMed ID: 29536446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments.
    Ollion J; Elez M; Robert L
    Nat Protoc; 2019 Nov; 14(11):3144-3161. PubMed ID: 31554957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells.
    Wollman AJ; Leake MC
    Methods Mol Biol; 2016; 1431():5-15. PubMed ID: 27283298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy.
    Kou L; Jin L; Lei H; Hu C; Li H; Hu X; Hu X
    J Microsc; 2019 Mar; 273(3):178-188. PubMed ID: 30489640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNA tracking for direct measurements of protein synthesis kinetics in live cells.
    Volkov IL; Lindén M; Aguirre Rivera J; Ieong KW; Metelev M; Elf J; Johansson M
    Nat Chem Biol; 2018 Jun; 14(6):618-626. PubMed ID: 29769736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating kinetic environments to study dynamic cellular processes in single cells.
    Thiemicke A; Jashnsaz H; Li G; Neuert G
    Sci Rep; 2019 Jul; 9(1):10129. PubMed ID: 31300695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-loop extruding condensin complexes can traverse one another.
    Kim E; Kerssemakers J; Shaltiel IA; Haering CH; Dekker C
    Nature; 2020 Mar; 579(7799):438-442. PubMed ID: 32132705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.