BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33745426)

  • 1. The Potential of T Cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Designing Novel Immunotherapy for Bladder Cancer.
    Mohsenzadegan M; Bavandpour P; Nowroozi MR; Amini E; Kourosh-Arami M; Momeni SA; Bokaie S; Sharifi L
    Endocr Metab Immune Disord Drug Targets; 2021; 21(12):2131-2146. PubMed ID: 33745426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The prospect of targeting T cell immunoglobulin and mucin-domain containing-3 in renal cell carcinoma immunotherapy.
    Mohsenzadegan M; Nowroozi MR; Fotovvat A; Bavandpour Baghshahi P; Bokaie S; Inanloo SH; Sharifi L
    Scand J Immunol; 2022 Sep; 96(3):e13197. PubMed ID: 35700044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tim-3 and its role in regulating anti-tumor immunity.
    Das M; Zhu C; Kuchroo VK
    Immunol Rev; 2017 Mar; 276(1):97-111. PubMed ID: 28258697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Functions of T-cell Immunoglobulin-domain and Mucin- domain Protein 3 in Cancer.
    Lu X
    Curr Med Chem; 2022; 29(11):1851-1865. PubMed ID: 34365943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy.
    Cai L; Li Y; Tan J; Xu L; Li Y
    J Hematol Oncol; 2023 Sep; 16(1):101. PubMed ID: 37670328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer.
    Sun F; Guo ZS; Gregory AD; Shapiro SD; Xiao G; Qu Z
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tim-3 finds its place in the cancer immunotherapy landscape.
    Acharya N; Sabatos-Peyton C; Anderson AC
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32601081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors.
    Sauer N; Janicka N; Szlasa W; Skinderowicz B; Kołodzińska K; Dwernicka W; Oślizło M; Kulbacka J; Novickij V; Karłowicz-Bodalska K
    Cancer Immunol Immunother; 2023 Nov; 72(11):3405-3425. PubMed ID: 37567938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel small-molecule inhibitor targeting TIM-3 for cancer immunotherapy.
    Wu M; Wu A; Zhang X; Li Y; Li B; Jin S; Dong Q; Niu X; Zhang L; Zhou X; Du J; Wu Y; Zhai W; Zhou X; Qiu L; Gao Y; Zhao W
    Biochem Pharmacol; 2023 Jun; 212():115583. PubMed ID: 37148978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer.
    Attalla K; Farkas AM; Anastos H; Audenet F; Galsky MD; Bhardwaj N; Sfakianos JP
    Urol Oncol; 2022 Sep; 40(9):403-406. PubMed ID: 32665122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants.
    Saleh R; Toor SM; Al-Ali D; Sasidharan Nair V; Elkord E
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32616706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer.
    Guo Z; Cheng D; Xia Z; Luan M; Wu L; Wang G; Zhang S
    J Transl Med; 2013 Sep; 11():215. PubMed ID: 24044888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-cell immunoglobulin mucin-3 expression in bladder urothelial carcinoma: Clinicopathologic correlations and association with survival.
    Yang M; Yu Q; Liu J; Fu W; Cao Y; Yu L; Shao S; Wang X; Niu H; Wang Y
    J Surg Oncol; 2015 Sep; 112(4):430-5. PubMed ID: 26265374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Tim-3 in regulating tumorigenesis, inflammation, and antitumor immunity therapy.
    Cao Y; Li Q; Liu H; He X; Huang F; Wang Y
    Cancer Biomark; 2021; 32(2):237-248. PubMed ID: 34092621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action.
    Du W; Yang M; Turner A; Xu C; Ferris RL; Huang J; Kane LP; Lu B
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28300768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case of bronchial asthma as an immune-related adverse event of pembrolizumab treatment for bladder cancer: A case report.
    Hamada K; Yoshimura K; Oshinomi K; Hirasawa Y; Ariizumi H; Ohkuma R; Shida M; Kubota Y; Matsui H; Ishiguro T; Sambe T; Ishida H; Horiike A; Wada S; Iwamoto S; Uchida N; Ogawa Y; Kobayashi S; Tsunoda T
    Medicine (Baltimore); 2022 Jan; 101(2):e28339. PubMed ID: 35029177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIM-3 pathway dysregulation and targeting in cancer.
    Zeidan AM; Komrokji RS; Brunner AM
    Expert Rev Anticancer Ther; 2021 May; 21(5):523-534. PubMed ID: 33334180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-Based Discovery of Small Molecules Bound to T-Cell Immunoglobulin and Mucin Domain-Containing Molecule 3 (TIM-3).
    Rietz TA; Teuscher KB; Mills JJ; Gogliotti RD; Lepovitz LT; Scaggs WR; Yoshida K; Luong K; Lee T; Fesik SW
    J Med Chem; 2021 Oct; 64(19):14757-14772. PubMed ID: 34597046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting PD-1 and Tim-3 Pathways to Reverse CD8 T-Cell Exhaustion and Enhance Ex Vivo T-Cell Responses to Autologous Dendritic/Tumor Vaccines.
    Liu J; Zhang S; Hu Y; Yang Z; Li J; Liu X; Deng L; Wang Y; Zhang X; Jiang T; Lu X
    J Immunother; 2016 May; 39(4):171-80. PubMed ID: 27070448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.