These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

730 related articles for article (PubMed ID: 33745450)

  • 1. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction.
    Sheng N; Cui H; Zhang T; Xuan P
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA-PCG associations.
    Gao M; Liu S; Qi Y; Guo X; Shang X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DMFLDA: A Deep Learning Framework for Predicting lncRNA-Disease Associations.
    Zeng M; Lu C; Fei Z; Wu FX; Li Y; Wang J; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2353-2363. PubMed ID: 32248123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder.
    Zhu Y; Zhang F; Zhang S; Yi M
    Methods; 2023 Mar; 211():1-9. PubMed ID: 36709790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific topology and topological connection sensitivity enhanced graph learning for lncRNA-disease association prediction.
    Xuan P; Bai H; Cui H; Zhang X; Nakaguchi T; Zhang T
    Comput Biol Med; 2023 Sep; 164():107265. PubMed ID: 37531860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HEGANLDA: A Computational Model for Predicting Potential Lncrna-Disease Associations Based On Multiple Heterogeneous Networks.
    Li J; Wang D; Yang Z; Liu M
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):388-398. PubMed ID: 34932483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism.
    Jin C; Shi Z; Lin K; Zhang H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations.
    Xuan P; Pan S; Zhang T; Liu Y; Sun H
    Cells; 2019 Aug; 8(9):. PubMed ID: 31480350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale enzymatic reaction prediction by variational graph autoencoders.
    Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LncRNA-disease association identification using graph auto-encoder and learning to rank.
    Liang Q; Zhang W; Wu H; Liu B
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism.
    Wang S; Qiao J; Feng S
    Sci Rep; 2024 Mar; 14(1):5185. PubMed ID: 38431702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs.
    Xuan P; Gong Z; Cui H; Li B; Zhang T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35362511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model.
    Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL
    BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.