BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 33745975)

  • 41. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension.
    Kim M; Kim S; Han N; Lee S; Kim H
    Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan.
    de Mesquita JP; Donnici CL; Pereira FV
    Biomacromolecules; 2010 Feb; 11(2):473-80. PubMed ID: 20055503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals.
    de Mesquita JP; Donnici CL; Teixeira IF; Pereira FV
    Carbohydr Polym; 2012 Sep; 90(1):210-7. PubMed ID: 24751032
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application.
    Hasan A; Waibhaw G; Tiwari S; Dharmalingam K; Shukla I; Pandey LM
    J Biomed Mater Res A; 2017 Sep; 105(9):2391-2404. PubMed ID: 28445626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit.
    Zhang W; Shu C; Chen Q; Cao J; Jiang W
    Food Chem; 2019 Nov; 299():125109. PubMed ID: 31295635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application.
    Jiang L; Lu Y; Liu X; Tu H; Zhang J; Shi X; Deng H; Du Y
    Carbohydr Polym; 2015 May; 121():428-35. PubMed ID: 25659718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods.
    Zhang K; Sun P; Liu H; Shang S; Song J; Wang D
    Carbohydr Polym; 2016 Mar; 138():237-43. PubMed ID: 26794758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles.
    Wang H; Gong X; Miao Y; Guo X; Liu C; Fan YY; Zhang J; Niu B; Li W
    Food Chem; 2019 Jun; 283():397-403. PubMed ID: 30722890
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of sodium alginate-based nanocomposite films: Effects of aspect ratio and surface charge of cellulose nanocrystals.
    Yang J; Zhong F; Liu F
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128420. PubMed ID: 38013077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films.
    Mujtaba M; Fernández-Marín R; Robles E; Labidi J; Yilmaz BA; Nefzi H
    Carbohydr Polym; 2021 Nov; 271():118424. PubMed ID: 34364565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide Nanofillers.
    Kim Y; Kim YT; Wang X; Min B; Park SI
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application.
    Pal N; Banerjee S; Roy P; Pal K
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.
    Wasupalli GK; Verma D
    Int J Biol Macromol; 2018 Jul; 114():10-17. PubMed ID: 29551510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge.
    Han J; Zhou C; Wu Y; Liu F; Wu Q
    Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of iron oxide/cellulose nanocomposite film.
    Yadav M; Mun S; Hyun J; Kim J
    Int J Biol Macromol; 2015 Mar; 74():142-9. PubMed ID: 25530000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of packaging paper sheets decorated with alginate/oxidized nanocellulose‑silver nanoparticles bio-nanocomposite.
    Adel AM; Al-Shemy MT; Diab MA; El-Sakhawy M; Toro RG; Montanari R; de Caro T; Caschera D
    Int J Biol Macromol; 2021 Jun; 181():612-620. PubMed ID: 33798578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanocellulose-alginate hydrogel for cell encapsulation.
    Park M; Lee D; Hyun J
    Carbohydr Polym; 2015 Feb; 116():223-8. PubMed ID: 25458293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.