These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33746234)

  • 1. Phase Transitions for Nonlinear Nonlocal Aggregation-Diffusion Equations.
    Carrillo JA; Gvalani RS
    Commun Math Phys; 2021; 382(1):485-545. PubMed ID: 33746234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Transitions in a Logistic Metapopulation Model with Nonlocal Interactions.
    Aydogmus O
    Bull Math Biol; 2018 Jan; 80(1):228-253. PubMed ID: 29204948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions.
    Hohn ME; Li B; Yang W
    J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of immune cells on the existence of virus quasi-species.
    Moussaoui A; Volpert V
    Math Biosci Eng; 2023 Aug; 20(9):15942-15961. PubMed ID: 37919996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground states in the diffusion-dominated regime.
    Carrillo JA; Hoffmann F; Mainini E; Volzone B
    Calc Var Partial Differ Equ; 2018; 57(5):127. PubMed ID: 30393443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal M-component nonlinear Schrödinger equations: Bright solitons, energy-sharing collisions, and positons.
    Rao J; He J; Kanna T; Mihalache D
    Phys Rev E; 2020 Sep; 102(3-1):032201. PubMed ID: 33075917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection.
    Siebert J; Alonso S; Bär M; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052909. PubMed ID: 25353863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-time behaviour of a porous medium model with degenerate hysteresis.
    Gavioli C; Krejčí P
    Philos Trans A Math Phys Eng Sci; 2024 Aug; 382(2277):20230299. PubMed ID: 39005014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front and pulse solutions for a system of reaction-diffusion equations with degenerate source terms.
    Bradshaw-Hajek BH; Wylie JJ
    Phys Rev E; 2019 Feb; 99(2-1):022214. PubMed ID: 30934314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear driven response of a phase-field crystal in a periodic pinning potential.
    Achim CV; Ramos JA; Karttunen M; Elder KR; Granato E; Ala-Nissila T; Ying SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011606. PubMed ID: 19257044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physical and qualitative analysis of fluctuations in air and vapour concentrations in a porous medium.
    Poorun Y; Dauhoo MZ; Bessafi M; Elahee MK; Gopaul A; Khoodaruth A
    R Soc Open Sci; 2018 May; 5(5):171954. PubMed ID: 29892384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of Criticality in the Phase Transitions of Open Floquet Systems.
    Mathey S; Diehl S
    Phys Rev Lett; 2019 Mar; 122(11):110602. PubMed ID: 30951330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions in scale-free neural networks: departure from the standard mean-field universality class.
    Aldana M; Larralde H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066130. PubMed ID: 15697457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting minimum energy states and multi-stability in nonlocal advection-diffusion models for interacting species.
    Giunta V; Hillen T; Lewis MA; Potts JR
    J Math Biol; 2022 Oct; 85(5):56. PubMed ID: 36264394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal Critical Behaviours in Non-Hermitian Phase Transitions.
    Wei BB; Jin L
    Sci Rep; 2017 Aug; 7(1):7165. PubMed ID: 28769064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of diffusion in one-dimensional discontinuous absorbing phase transitions.
    Fiore CE; Landi GT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032123. PubMed ID: 25314411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport equations for subdiffusion with nonlinear particle interaction.
    Straka P; Fedotov S
    J Theor Biol; 2015 Feb; 366():71-83. PubMed ID: 25463696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended families of critical and stationary droplets for nonequilibrium phase transitions in spatially discrete bistable systems.
    Wang CJ; Liu DJ; Evans JW
    Phys Rev E; 2020 Feb; 101(2-1):022803. PubMed ID: 32168646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal Bazykin's model with space-time nonlocality.
    Pal S; Banerjee M; Volpert V
    Math Biosci Eng; 2020 Jul; 17(5):4801-4824. PubMed ID: 33120529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchy of boundary-driven phase transitions in multispecies particle systems.
    Popkov V; Salerno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011130. PubMed ID: 21405684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.