These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Tagged-particle dynamics in a fluid adsorbed in a disordered porous solid: interplay between the diffusion-localization and liquid-glass transitions. Krakoviack V Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061501. PubMed ID: 19658507 [TBL] [Abstract][Full Text] [Related]
23. Free energy of a chemotactic model with nonlinear diffusion. Baek SK; Kim BJ Sci Rep; 2017 Aug; 7(1):8909. PubMed ID: 28827589 [TBL] [Abstract][Full Text] [Related]
24. Order-disorder transition in a two-dimensional associating lattice gas. Furlan AP; Oliveira TJ; Stilck JF; Dickman R Phys Rev E; 2019 Aug; 100(2-1):022109. PubMed ID: 31574678 [TBL] [Abstract][Full Text] [Related]
25. On the modelling of spatially heterogeneous nonlocal diffusion: deciding factors and preferential position of individuals. Alfaro M; Giletti T; Kim YJ; Peltier G; Seo H J Math Biol; 2022 Apr; 84(5):38. PubMed ID: 35419762 [TBL] [Abstract][Full Text] [Related]
26. Geometrical model for martensitic phase transitions: Understanding criticality and weak universality during microstructure growth. Torrents G; Illa X; Vives E; Planes A Phys Rev E; 2017 Jan; 95(1-1):013001. PubMed ID: 28208490 [TBL] [Abstract][Full Text] [Related]
27. Non-uniqueness of Admissible Solutions for the 2D Euler Equation with Mengual F Commun Math Phys; 2024; 405(9):207. PubMed ID: 39310718 [TBL] [Abstract][Full Text] [Related]
28. Pattern formation of ion channels with state-dependent charges and diffusion constants in fluid membranes. Kramer SC; Kree R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051920. PubMed ID: 12059606 [TBL] [Abstract][Full Text] [Related]
29. Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates. Bratus AS; Posvyanskii VP; Novozhilov AS Nonlinear Anal Real World Appl; 2010 Jun; 11(3):1897-1917. PubMed ID: 20596239 [TBL] [Abstract][Full Text] [Related]
30. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling. Hackett-Jones EJ; Landman KA; Fellner K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041912. PubMed ID: 22680503 [TBL] [Abstract][Full Text] [Related]
31. Instability of turing patterns in reaction-diffusion-ODE systems. Marciniak-Czochra A; Karch G; Suzuki K J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913 [TBL] [Abstract][Full Text] [Related]
32. Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions. Cencini M; Tessone CJ; Torcini A Chaos; 2008 Sep; 18(3):037125. PubMed ID: 19045499 [TBL] [Abstract][Full Text] [Related]
33. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition. Vlad MO; Ross J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061908. PubMed ID: 12513319 [TBL] [Abstract][Full Text] [Related]
34. Exact free energy functional for a driven diffusive open stationary nonequilibrium system. Derrida B; Lebowitz JL; Speer ER Phys Rev Lett; 2002 Jul; 89(3):030601. PubMed ID: 12144382 [TBL] [Abstract][Full Text] [Related]
36. The Effect of Movement Behavior on Population Density in Patchy Landscapes. Zaker N; Ketchemen L; Lutscher F Bull Math Biol; 2019 Dec; 82(1):1. PubMed ID: 31919597 [TBL] [Abstract][Full Text] [Related]
37. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
38. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Curado EM; Nobre FD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021107. PubMed ID: 12636653 [TBL] [Abstract][Full Text] [Related]
39. Invasion and adaptive evolution for individual-based spatially structured populations. Champagnat N; Méléard S J Math Biol; 2007 Aug; 55(2):147-88. PubMed ID: 17554541 [TBL] [Abstract][Full Text] [Related]