These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33746470)

  • 1. Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.
    Liang D; Cheng J; Ke Z; Ying L
    IEEE Signal Process Mag; 2020 Jan; 37(1):141-151. PubMed ID: 33746470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep, deep learning with BART.
    Blumenthal M; Luo G; Schilling M; Holme HCM; Uecker M
    Magn Reson Med; 2023 Feb; 89(2):678-693. PubMed ID: 36254526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction.
    Hossain MB; Shinde RK; Oh S; Kwon KC; Kim N
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation.
    Du T; Zhang H; Li Y; Pickup S; Rosen M; Zhou R; Song HK; Fan Y
    Med Image Anal; 2021 Aug; 72():102098. PubMed ID: 34091426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
    Knoll F; Hammernik K; Zhang C; Moeller S; Pock T; Sodickson DK; Akçakaya M
    IEEE Signal Process Mag; 2020 Jan; 37(1):128-140. PubMed ID: 33758487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review.
    Singh D; Monga A; de Moura HL; Zhang X; Zibetti MVW; Regatte RR
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review and experimental evaluation of deep learning methods for MRI reconstruction.
    Pal A; Rathi Y
    J Mach Learn Biomed Imaging; 2022 Mar; 1():. PubMed ID: 35722657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial magnetic resonance image reconstruction with a deep unrolled projected fast iterative soft-thresholding network.
    Qu B; Zhang J; Kang T; Lin J; Lin M; She H; Wu Q; Wang M; Zheng G
    Comput Biol Med; 2024 Jan; 168():107707. PubMed ID: 38000244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning.
    Wang S; Wu R; Jia S; Diakite A; Li C; Liu Q; Zheng H; Ying L
    Magn Reson Med; 2024 Aug; 92(2):496-518. PubMed ID: 38624162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging.
    Hammernik K; Küstner T; Yaman B; Huang Z; Rueckert D; Knoll F; Akçakaya M
    IEEE Signal Process Mag; 2023 Jan; 40(1):98-114. PubMed ID: 37304755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating CEST imaging using a model-based deep neural network with synthetic training data.
    Xu J; Zu T; Hsu YC; Wang X; Chan KWY; Zhang Y
    Magn Reson Med; 2024 Feb; 91(2):583-599. PubMed ID: 37867413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
    Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F
    Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction.
    Sandino CM; Lai P; Vasanawala SS; Cheng JY
    Magn Reson Med; 2021 Jan; 85(1):152-167. PubMed ID: 32697891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross-domain complex convolution neural network for undersampled magnetic resonance image reconstruction.
    Yuan T; Yang J; Chi J; Yu T; Liu F
    Magn Reson Imaging; 2024 May; 108():86-97. PubMed ID: 38331053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.