These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33746627)

  • 1. Inertial Measurements for Tongue Motion Tracking Based on Magnetic Localization with Orientation Compensation.
    Sebkhi N; Bhavsar A; Anderson DV; Wang J; Inan OT
    IEEE Sens J; 2021 Mar; 21(6):7964-7971. PubMed ID: 33746627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Magnetic Calibration and Localization Based on Expectation Maximization for Tongue Tracking.
    Lu J; Yang Z; Okkelberg KZ; Ghovanloo M
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):52-63. PubMed ID: 28422650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot.
    Yang W; Bajenov A; Shen Y
    Robotics Biomim; 2017; 4(1):16. PubMed ID: 29170730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors.
    de Vries WH; Veeger HE; Baten CT; van der Helm FC
    Gait Posture; 2009 Jun; 29(4):535-41. PubMed ID: 19150239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy.
    Cheng C; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():563-6. PubMed ID: 19964478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quadratic particle swarm optimization method for magnetic tracking of tongue motion in speech disorders.
    Wang J; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4222-5. PubMed ID: 19163644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effortless procedure to align the local frame of an inertial measurement unit to the local frame of another motion capture system.
    Chardonnens J; Favre J; Aminian K
    J Biomech; 2012 Aug; 45(13):2297-300. PubMed ID: 22784650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Wireless Tongue Tracking System on the Identification of Phoneme Landmarks.
    Sebkhi N; Santus N; Bhavsar A; Siahpoushan S; Inan OT
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1190-1197. PubMed ID: 32915719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty.
    Zügner R; Tranberg R; Timperley J; Hodgins D; Mohaddes M; Kärrholm J
    BMC Musculoskelet Disord; 2019 Feb; 20(1):52. PubMed ID: 30727979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plane-Aided Visual-Inertial Odometry for 6-DOF Pose Estimation of a Robotic Navigation Aid.
    Zhang HE; Ye C
    IEEE Access; 2020; 8():90042-90051. PubMed ID: 33747673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of inertial sensor-based motion capturing for magnetically distorted field applications.
    Schiefer C; Ellegast RP; Hermanns I; Kraus T; Ochsmann E; Larue C; Plamondon A
    J Biomech Eng; 2014 Dec; 136(12):121008. PubMed ID: 25321344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation.
    Sabatini AM
    Sensors (Basel); 2011; 11(10):9182-206. PubMed ID: 22163689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion.
    Patil AK; Balasubramanyam A; Ryu JY; B N PK; Chakravarthi B; Chai YH
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetometer-Based Drift Correction During Rest inIMU Arm Motion Tracking.
    Wittmann F; Lambercy O; Gassert R
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.
    Erdem AT; Ercan AÖ
    IEEE Trans Image Process; 2015 Feb; 24(2):538-48. PubMed ID: 25531951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
    Roetenberg D; Slycke PJ; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):883-90. PubMed ID: 17518285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.