These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33746627)

  • 21. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
    He C; Kazanzides P; Sen HT; Kim S; Liu Y
    Sensors (Basel); 2015 Jul; 15(7):16448-65. PubMed ID: 26184191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial Measurement Unit-Assisted Ultrasonic Tracking System for Ultrasound Probe Localization.
    Cai Q; Hu J; Chen M; Prieto J; Rosenbaum AJ; Stringer JSA; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Sep; 70(9):920-929. PubMed ID: 36150002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drift-Free Foot Orientation Estimation in Running Using Wearable IMU.
    Falbriard M; Meyer F; Mariani B; Millet GP; Aminian K
    Front Bioeng Biotechnol; 2020; 8():65. PubMed ID: 32117943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation.
    Roetenberg D; Luinge HJ; Baten CT; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):395-405. PubMed ID: 16200762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Full-State Robust Extended Kalman Filter for Orientation Tracking During Long-Duration Dynamic Tasks Using Magnetic and Inertial Measurement Units.
    Nazarahari M; Rouhani H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1280-1289. PubMed ID: 34181546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.
    Yan L; Zhu B; Jiao Z; Chen CY; Chen IM
    Sci Rep; 2014 Oct; 4():6756. PubMed ID: 25342000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.
    Zihajehzadeh S; Yoon PK; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3141-4. PubMed ID: 26736958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passive magnetic-based localization for precise untethered medical instrument tracking.
    Sun Z; Maréchal L; Foong S
    Comput Methods Programs Biomed; 2018 Mar; 156():151-161. PubMed ID: 29428067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning to Improve Orientation Estimation in Sports Situations Challenging for Inertial Sensor Use.
    van Dijk MP; Kok M; Berger MAM; Hoozemans MJM; Veeger DHEJ
    Front Sports Act Living; 2021; 3():670263. PubMed ID: 34414370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy Improvement of Attitude Determination Systems Using EKF-Based Error Prediction Filter and PI Controller.
    Farhangian F; Landry R
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation.
    Schepers HM; Roetenberg D; Veltink PH
    Med Biol Eng Comput; 2010 Jan; 48(1):27-37. PubMed ID: 20016949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetometer-free Realtime Inertial Motion Tracking by Exploitation of Kinematic Constraints in 2-DoF Joints.
    Laidig D; Lehmann D; Begin MA; Seel T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1233-1238. PubMed ID: 31946115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System.
    Patil AK; Balasubramanyam A; Ryu JY; Chakravarthi B; Chai YH
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of Thigh Angle Estimation Using Inertial Measurement Unit Data against Optical Motion Capture Systems.
    Abhayasinghe N; Murray I; Sharif Bidabadi S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Complementary Filter Design on SE(3) to IdentifyMicro-Motions during 3D Motion Tracking.
    Phan GH; Hansen C; Tommasino P; Hussain A; Formica D; Campolo D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33081321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis.
    Leardini A; Lullini G; Giannini S; Berti L; Ortolani M; Caravaggi P
    J Neuroeng Rehabil; 2014 Sep; 11():136. PubMed ID: 25212257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the wireless ultra-miniaturized inertial measurement unit WB-4: preliminary performance evaluation.
    Lin Z; Zecca M; Sessa S; Bartolomeo L; Ishii H; Takanishi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6927-30. PubMed ID: 22255931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation.
    Ligorio G; Sabatini AM
    Sensors (Basel); 2013 Feb; 13(2):1919-41. PubMed ID: 23385409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.