These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33746718)

  • 1. Visual Cues Predictive of Behaviorally Neutral Outcomes Evoke Persistent but Not Interval Timing Activity in V1, Whereas Aversive Conditioning Suppresses This Activity.
    Monk KJ; Allard S; Hussain Shuler MG
    Front Syst Neurosci; 2021; 15():611744. PubMed ID: 33746718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective activation of a putative reinforcement signal conditions cued interval timing in primary visual cortex.
    Liu CH; Coleman JE; Davoudi H; Zhang K; Hussain Shuler MG
    Curr Biol; 2015 Jun; 25(12):1551-61. PubMed ID: 26004763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
    Yuan M; Giménez-Fernández T; Méndez-Bértolo C; Moratti S
    J Neurosci; 2018 Sep; 38(38):8262-8276. PubMed ID: 30104342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Timing of Reward-Seeking Action Tracks Visually Cued Theta Oscillations in Primary Visual Cortex.
    Levy JM; Zold CL; Namboodiri VMK; Hussain Shuler MG
    J Neurosci; 2017 Oct; 37(43):10408-10420. PubMed ID: 28947572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice.
    Brebner LS; Ziminski JJ; Margetts-Smith G; Sieburg MC; Reeve HM; Nowotny T; Hirrlinger J; Heintz TG; Lagnado L; Kato S; Kobayashi K; Ramsey LA; Hall CN; Crombag HS; Koya E
    J Neurosci; 2020 Jan; 40(2):395-410. PubMed ID: 31727794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues.
    Servonnet A; Hernandez G; El Hage C; Rompré PP; Samaha AN
    J Neurosci; 2020 Feb; 40(8):1732-1743. PubMed ID: 31953370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visuocortical changes during delay and trace aversive conditioning: evidence from steady-state visual evoked potentials.
    Miskovic V; Keil A
    Emotion; 2013 Jun; 13(3):554-61. PubMed ID: 23398582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociations in hippocampal 5-hydroxytryptamine release in the rat following Pavlovian aversive conditioning to discrete and contextual stimuli.
    Wilkinson LS; Humby T; Killcross S; Robbins TW; Everitt BJ
    Eur J Neurosci; 1996 Jul; 8(7):1479-87. PubMed ID: 8758955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Modulation of Orbitofrontal Network Activity during Negative Occasion Setting.
    Shobe JL; Bakhurin KI; Claar LD; Masmanidis SC
    J Neurosci; 2017 Sep; 37(39):9415-9423. PubMed ID: 28847808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affective blindsight: intact fear conditioning to a visual cue in a cortically blind patient.
    Hamm AO; Weike AI; Schupp HT; Treig T; Dressel A; Kessler C
    Brain; 2003 Feb; 126(Pt 2):267-75. PubMed ID: 12538396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.
    Huertas MA; Hussain Shuler MG; Shouval HZ
    J Neurosci; 2015 Sep; 35(37):12659-72. PubMed ID: 26377457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theta Oscillations in Visual Cortex Emerge with Experience to Convey Expected Reward Time and Experienced Reward Rate.
    Zold CL; Hussain Shuler MG
    J Neurosci; 2015 Jul; 35(26):9603-14. PubMed ID: 26134643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different time course of visuocortical signal changes to fear-conditioned faces with direct or averted gaze: a ssVEP study with single-trial analysis.
    Wieser MJ; Miskovic V; Rausch S; Keil A
    Neuropsychologia; 2014 Sep; 62():101-10. PubMed ID: 25050854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.
    Aitken TJ; Greenfield VY; Wassum KM
    J Neurochem; 2016 Mar; 136(5):1026-36. PubMed ID: 26715366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appetitive and aversive outcome associations modulate exogenous cueing.
    Bucker B; Theeuwes J
    Atten Percept Psychophys; 2016 Oct; 78(7):2253-65. PubMed ID: 27146992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward Timing and Its Expression by Inhibitory Interneurons in the Mouse Primary Visual Cortex.
    Monk KJ; Allard S; Hussain Shuler MG
    Cereb Cortex; 2020 Jun; 30(8):4662-4676. PubMed ID: 32202618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.
    Ghitza UE; Fabbricatore AT; Prokopenko V; Pawlak AP; West MO
    J Neurosci; 2003 Aug; 23(19):7239-45. PubMed ID: 12917356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.
    Wang F; Chen M; Yan Y; Zhaoping L; Li W
    J Neurosci; 2015 Sep; 35(39):13419-29. PubMed ID: 26424888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas.
    Mehta AD; Ulbert I; Schroeder CE
    Cereb Cortex; 2000 Apr; 10(4):343-58. PubMed ID: 10769247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking.
    Capuzzo G; Floresco SB
    J Neurosci; 2020 Jun; 40(24):4773-4787. PubMed ID: 32393535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.