These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33747037)
1. A Stacking Ensemble Learning Framework for Genomic Prediction. Liang M; Chang T; An B; Duan X; Du L; Wang X; Miao J; Xu L; Gao X; Zhang L; Li J; Gao H Front Genet; 2021; 12():600040. PubMed ID: 33747037 [TBL] [Abstract][Full Text] [Related]
2. Application of ensemble learning to genomic selection in chinese simmental beef cattle. Liang M; Miao J; Wang X; Chang T; An B; Duan X; Xu L; Gao X; Zhang L; Li J; Gao H J Anim Breed Genet; 2021 May; 138(3):291-299. PubMed ID: 33089920 [TBL] [Abstract][Full Text] [Related]
3. Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle. Mota LFM; Giannuzzi D; Bisutti V; Pegolo S; Trevisi E; Schiavon S; Gallo L; Fineboym D; Katz G; Cecchinato A J Dairy Sci; 2022 May; 105(5):4237-4255. PubMed ID: 35282909 [TBL] [Abstract][Full Text] [Related]
4. Genomic prediction of blood biomarkers of metabolic disorders in Holstein cattle using parametric and nonparametric models. Mota LFM; Giannuzzi D; Pegolo S; Sturaro E; Gianola D; Negrini R; Trevisi E; Ajmone Marsan P; Cecchinato A Genet Sel Evol; 2024 Apr; 56(1):31. PubMed ID: 38684971 [TBL] [Abstract][Full Text] [Related]
5. Improving Genomic Prediction with Machine Learning Incorporating TPE for Hyperparameters Optimization. Liang M; An B; Li K; Du L; Deng T; Cao S; Du Y; Xu L; Gao X; Zhang L; Li J; Gao H Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421361 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs. Wang X; Shi S; Wang G; Luo W; Wei X; Qiu A; Luo F; Ding X J Anim Sci Biotechnol; 2022 May; 13(1):60. PubMed ID: 35578371 [TBL] [Abstract][Full Text] [Related]
7. Enhancing genomic prediction with Stacking Ensemble Learning in Arabica Coffee. Nascimento M; Nascimento ACC; Azevedo CF; de Oliveira ACB; Caixeta ET; Jarquin D Front Plant Sci; 2024; 15():1373318. PubMed ID: 39086911 [TBL] [Abstract][Full Text] [Related]
8. Predictive ability of multi-population genomic prediction methods of phenotypes for reproduction traits in Chinese and Austrian pigs. Wang X; Zhang Z; Du H; Pfeiffer C; Mészáros G; Ding X Genet Sel Evol; 2024 Jun; 56(1):49. PubMed ID: 38926647 [TBL] [Abstract][Full Text] [Related]
9. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. Ogutu JO; Schulz-Streeck T; Piepho HP BMC Proc; 2012 May; 6 Suppl 2(Suppl 2):S10. PubMed ID: 22640436 [TBL] [Abstract][Full Text] [Related]
10. MAK: a machine learning framework improved genomic prediction via multi-target ensemble regressor chains and automatic selection of assistant traits. Liang M; Cao S; Deng T; Du L; Li K; An B; Du Y; Xu L; Zhang L; Gao X; Li J; Guo P; Gao H Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36752363 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of GBLUP, BayesB and elastic net for genomic prediction in Chinese Simmental beef cattle. Wang X; Miao J; Chang T; Xia J; An B; Li Y; Xu L; Zhang L; Gao X; Li J; Gao H PLoS One; 2019; 14(2):e0210442. PubMed ID: 30817758 [TBL] [Abstract][Full Text] [Related]
12. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency. An B; Liang M; Chang T; Duan X; Du L; Xu L; Zhang L; Gao X; Li J; Gao H Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963831 [TBL] [Abstract][Full Text] [Related]
13. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. Gao N; Li J; He J; Xiao G; Luo Y; Zhang H; Chen Z; Zhang Z BMC Genet; 2015 Oct; 16():120. PubMed ID: 26466667 [TBL] [Abstract][Full Text] [Related]
14. Genomic Predictions in Korean Hanwoo Cows: A Comparative Analysis of Genomic BLUP and Bayesian Methods for Reproductive Traits. Haque MA; Lee YM; Ha JJ; Jin S; Park B; Kim NY; Won JI; Kim JJ Animals (Basel); 2023 Dec; 14(1):. PubMed ID: 38200758 [TBL] [Abstract][Full Text] [Related]
15. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Abdollahi-Arpanahi R; Gianola D; Peñagaricano F Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611 [TBL] [Abstract][Full Text] [Related]
16. Exploring the genetic architecture and improving genomic prediction accuracy for mastitis and milk production traits in dairy cattle by mapping variants to hepatic transcriptomic regions responsive to intra-mammary infection. Fang L; Sahana G; Ma P; Su G; Yu Y; Zhang S; Lund MS; Sørensen P Genet Sel Evol; 2017 May; 49(1):44. PubMed ID: 28499345 [TBL] [Abstract][Full Text] [Related]
17. Genomic prediction in plants: opportunities for ensemble machine learning based approaches. Farooq M; van Dijk ADJ; Nijveen H; Mansoor S; de Ridder D F1000Res; 2022; 11():802. PubMed ID: 37035464 [No Abstract] [Full Text] [Related]
18. A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library. Montesinos-López OA; Montesinos-López A; Cano-Paez B; Hernández-Suárez CM; Santana-Mancilla PC; Crossa J Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011405 [TBL] [Abstract][Full Text] [Related]
19. Optimizing genomic prediction for Australian Red dairy cattle. van den Berg I; MacLeod IM; Reich CM; Breen EJ; Pryce JE J Dairy Sci; 2020 Jul; 103(7):6276-6298. PubMed ID: 32331891 [TBL] [Abstract][Full Text] [Related]
20. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]