These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 33747220)

  • 1. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.
    Qiu P; Guo Q; Yao Q; Chen J; Lin J
    PLoS One; 2021; 16(11):e0254283. PubMed ID: 34797837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis.
    Lu Y; Yang G; Xiao Y; Zhang T; Su F; Chang R; Ling X; Bai Y
    Breast Cancer; 2020 Sep; 27(5):903-911. PubMed ID: 32338339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biomarkers identified in triple-negative breast cancer through RNA-sequencing.
    Chen YL; Wang K; Xie F; Zhuo ZL; Liu C; Yang Y; Wang S; Zhao XT
    Clin Chim Acta; 2022 Jun; 531():302-308. PubMed ID: 35504321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of hub genes associated with bladder cancer using bioinformatic analyses.
    Zheng W; Zhao Y; Wang T; Zhao X; Tan Z
    Transl Cancer Res; 2022 May; 11(5):1330-1343. PubMed ID: 35706790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis.
    Ma J; Chen C; Liu S; Ji J; Wu D; Huang P; Wei D; Fan Z; Ren L
    Cancer Gene Ther; 2022 Nov; 29(11):1578-1589. PubMed ID: 35474355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis.
    Yuan Q; Zheng L; Liao Y; Wu G
    World J Surg Oncol; 2021 Mar; 19(1):86. PubMed ID: 33757543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub genes and diagnostic efficacy for triple-negative breast cancer through WGCNA and Mendelian randomization.
    Lin Y; Wang S; Yang Q
    Discov Oncol; 2024 Apr; 15(1):117. PubMed ID: 38609711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Five Hub Genes as Key Prognostic Biomarkers in Liver Cancer via Integrated Bioinformatics Analysis.
    Nguyen TB; Do DN; Nguyen-Thanh T; Tatipamula VB; Nguyen HT
    Biology (Basel); 2021 Sep; 10(10):. PubMed ID: 34681056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of NUF2 and FAM83D as potential biomarkers in triple-negative breast cancer.
    Zhai X; Yang Z; Liu X; Dong Z; Zhou D
    PeerJ; 2020; 8():e9975. PubMed ID: 33005492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Seven Cell Cycle-Related Genes with Unfavorable Prognosis and Construction of their TF-miRNA-mRNA regulatory network in Breast Cancer.
    Hong Z; Wang Q; Hong C; Liu M; Qiu P; Lin R; Lin X; Chen F; Li Q; Liu L; Wang C; Chen D
    J Cancer; 2021; 12(3):740-753. PubMed ID: 33403032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis.
    Zhou Z; Li Y; Hao H; Wang Y; Zhou Z; Wang Z; Chu X
    Cell Transplant; 2019 Dec; 28(1_suppl):76S-86S. PubMed ID: 31822116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Potential Key Genes Associated With the Pathogenesis, Metastasis, and Prognosis of Triple-Negative Breast Cancer on the Basis of Integrated Bioinformatics Analysis.
    Zhao B; Xu Y; Zhao Y; Shen S; Sun Q
    Front Oncol; 2020; 10():856. PubMed ID: 32596149
    [No Abstract]   [Full Text] [Related]  

  • 16. Prognostic Significance of CCNB2 Expression in Triple-Negative Breast Cancer.
    Cao J; Sun S; Min R; Li R; Fan X; Han Y; Feng Z; Li N
    Cancer Manag Res; 2021; 13():9477-9487. PubMed ID: 35002325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of DNA Damage Repair Genes Involved in the Prognosis of Triple-Negative Breast Cancer Patients Based on Bioinformatics.
    Wang N; Gu Y; Chi J; Liu X; Xiong Y; Zhong C; Wang F; Wang X; Li L
    Front Genet; 2021; 12():721873. PubMed ID: 34408776
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of novel candidate genes and small molecule drugs in ovarian cancer by bioinformatics strategy.
    Wei M; Bai X; Dong Q
    Transl Cancer Res; 2022 Jun; 11(6):1630-1643. PubMed ID: 35836518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.