BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33747334)

  • 1. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms.
    Hosseini SAH; Yaman B; Moeller S; Hong M; Akçakaya M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1280-1291. PubMed ID: 33747334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction.
    Jia Y; McMichael N; Mokarzel P; Thompson B; Si D; Humphries T
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36541524
    [No Abstract]   [Full Text] [Related]  

  • 4. Equilibrated Zeroth-Order Unrolled Deep Network for Parallel MR Imaging.
    Cui ZX; Jia S; Cheng J; Zhu Q; Liu Y; Zhao K; Ke Z; Huang W; Wang H; Zhu Y; Ying L; Liang D
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3540-3554. PubMed ID: 37428656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A total variation prior unrolling approach for computed tomography reconstruction.
    Zhang P; Ren S; Liu Y; Gui Z; Shangguan H; Wang Y; Shu H; Chen Y
    Med Phys; 2023 May; 50(5):2816-2834. PubMed ID: 36791315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory-Efficient Training for Fully Unrolled Deep Learned PET Image Reconstruction with Iteration-Dependent Targets.
    Corda-D'Incan G; Schnabel JA; Reader AJ
    IEEE Trans Radiat Plasma Med Sci; 2022 May; 6(5):552-563. PubMed ID: 35664091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination.
    Hammernik K; Schlemper J; Qin C; Duan J; Summers RM; Rueckert D
    Magn Reson Med; 2021 Oct; 86(4):1859-1872. PubMed ID: 34110037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced deep unrolling networks for snapshot compressive hyperspectral imaging.
    Qin X; Quan Y; Ji H
    Neural Netw; 2024 Jun; 174():106250. PubMed ID: 38531122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging.
    Hammernik K; Küstner T; Yaman B; Huang Z; Rueckert D; Knoll F; Akçakaya M
    IEEE Signal Process Mag; 2023 Jan; 40(1):98-114. PubMed ID: 37304755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACCELERATED PARALLEL MRI USING MEMORY EFFICIENT AND ROBUST MONOTONE OPERATOR LEARNING (MOL).
    Pramanik A; Jacob M
    Proc IEEE Int Symp Biomed Imaging; 2023 Apr; 2023():. PubMed ID: 38738185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction.
    Mehranian A; Rahmim A; Ay MR; Kotasidis F; Zaidi H
    Med Phys; 2013 May; 40(5):052503. PubMed ID: 23635293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging.
    Kim M; Chung W
    Comput Methods Programs Biomed; 2022 Oct; 225():107090. PubMed ID: 36067702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing.
    Song H; Ding Q; Gong J; Meng H; Lai Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model.
    Malavé MO; Baron CA; Koundinyan SP; Sandino CM; Ong F; Cheng JY; Nishimura DG
    Magn Reson Med; 2020 Aug; 84(2):800-812. PubMed ID: 32011021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training Variational Networks With Multidomain Simulations: Speed-of-Sound Image Reconstruction.
    Bernhardt M; Vishnevskiy V; Rau R; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2584-2594. PubMed ID: 32746211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.