BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 33747370)

  • 1. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing.
    Yao X; Lyu P; Yoo K; Yadav MK; Singh R; Atala A; Lu B
    J Extracell Vesicles; 2021 Mar; 10(5):e12076. PubMed ID: 33747370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing.
    Lyu P; Javidi-Parsijani P; Atala A; Lu B
    Nucleic Acids Res; 2019 Sep; 47(17):e99. PubMed ID: 31299082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing.
    Mun D; Kang JY; Kim H; Yun N; Joung B
    J Control Release; 2024 Jun; 370():798-810. PubMed ID: 38754633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lentiviral Capsid-Mediated
    Lu Z; Yao X; Lyu P; Yadav M; Yoo K; Atala A; Lu B
    CRISPR J; 2021 Dec; 4(6):914-928. PubMed ID: 33733873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing.
    Whitley JA; Cai H
    J Extracell Vesicles; 2023 Sep; 12(9):e12343. PubMed ID: 37723839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells.
    Bloomer H; Khirallah J; Li Y; Xu Q
    Adv Drug Deliv Rev; 2022 Feb; 181():114087. PubMed ID: 34942274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities.
    Lyu P; Lu Z; Cho SI; Yadav M; Yoo KW; Atala A; Kim JS; Lu B
    CRISPR J; 2021 Feb; 4(1):69-81. PubMed ID: 33616436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serum extracellular vesicles for delivery of CRISPR-CAS9 ribonucleoproteins to modify the dystrophin gene.
    Majeau N; Fortin-Archambault A; Gérard C; Rousseau J; Yaméogo P; Tremblay JP
    Mol Ther; 2022 Jul; 30(7):2429-2442. PubMed ID: 35619556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.
    Shin J; Lee N; Cho S; Cho BK
    Methods Mol Biol; 2018; 1772():151-169. PubMed ID: 29754227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of CRISPR-Cas12a Ribonucleoprotein Complex for Genome Editing in an Embryogenic Citrus Cell Line.
    Fang H; Culver JN; Niedz RP; Qi Y
    Methods Mol Biol; 2023; 2653():153-171. PubMed ID: 36995625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.
    Walther J; Porenta D; Wilbie D; Seinen C; Benne N; Yang Q; de Jong OG; Lei Z; Mastrobattista E
    Eur J Pharm Biopharm; 2024 Mar; 196():114207. PubMed ID: 38325664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing.
    Li S; Song Z; Liu C; Chen XL; Han H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47762-47770. PubMed ID: 31773942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular vesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex targeting proprotein convertase subtilisin-kexin type 9 (Pcsk9) in primary mouse hepatocytes.
    Ilahibaks NF; Kluiver TA; de Jong OG; de Jager SCA; Schiffelers RM; Vader P; Peng WC; Lei Z; Sluijter JPG
    J Extracell Vesicles; 2024 Jan; 13(1):e12389. PubMed ID: 38191764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing.
    Dubey S; Chen Z; Jiang YJ; Talis A; Molotkov A; Ali A; Mintz A; Momen-Heravi F
    Theranostics; 2024; 14(7):2777-2793. PubMed ID: 38773978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles.
    Mazurov D; Ramadan L; Kruglova N
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.
    Kim H; Choi J; Won KH
    BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins.
    Metzger JM; Wang Y; Neuman SS; Snow KJ; Murray SA; Lutz CM; Bondarenko V; Felton J; Gimse K; Xie R; Li D; Zhao Y; Flowers MT; Simmons HA; Roy S; Saha K; Levine JE; Emborg ME; Gong S
    Biomaterials; 2023 Feb; 293():121959. PubMed ID: 36527789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.