These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33747601)

  • 1. Synthesis and characterization of ester-diol based polyurethane: a potentiality check for hypopharyngeal tissue engineering application.
    Chakraborty I; Hossain CM; Basak P
    Biomed Eng Lett; 2021 Feb; 11(1):25-37. PubMed ID: 33747601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Properties of Flexible Polyurethane Using Ferric Catalyst for Hypopharyngeal Tissue Engineering.
    Shen Z; Wang J; Lu D; Li Q; Zhou C; Zhu Y; Hu X
    Biomed Res Int; 2015; 2015():798721. PubMed ID: 26236737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Polyurethane 3D Scaffolds Based on Polytetrahydrofuran Glycol and Polyethylene Glycol for Soft Tissue Engineering.
    Luo K; Wang L; Chen X; Zeng X; Zhou S; Zhang P; Li J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering.
    Mi HY; Jing X; Napiwocki BN; Hagerty BS; Chen G; Turng LS
    J Mater Chem B; 2017 Jun; 5(22):4137-4151. PubMed ID: 29170715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, Characterization, and Electrospinning of a Functionalizable, Polycaprolactone-Based Polyurethane for Soft Tissue Engineering.
    Hu JJ; Liu CC; Lin CH; Tuan-Mu HY
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34068633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing Polyurethane Using Isosorbide in Primary Alcohol Form, and Its Biocompatibility Properties.
    Hong SM; Kwon HJ; Lee CW
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering.
    Shen Z; Lu D; Li Q; Zhang Z; Zhu Y
    Biomed Res Int; 2015; 2015():871202. PubMed ID: 25839041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of polyurethane towards promoting the ex vivo cytocompatibility and in vivo biocompatibility for hypopharyngeal tissue engineering.
    Shen Z; Kang C; Chen J; Ye D; Qiu S; Guo S; Zhu Y
    J Biomater Appl; 2013 Nov; 28(4):607-16. PubMed ID: 23241963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications.
    Kishan AP; Wilems T; Mohiuddin S; Cosgriff-Hernandez EM
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3493-3502. PubMed ID: 33445385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds.
    Jin C; Park J; Shirakawa H; Osaki M; Ikemoto Y; Yamaguchi H; Takahashi H; Ohashi Y; Harada A; Matsuba G; Takashima Y
    Soft Matter; 2022 Jul; 18(27):5027-5036. PubMed ID: 35695164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth.
    Hashemi SS; Rajabi SS; Mahmoudi R; Ghanbari A; Zibara K; Barmak MJ
    J Wound Care; 2020 Oct; 29(10):586-596. PubMed ID: 33052794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the structure of polyurethanes for bone tissue engineering applications.
    Bil M; Ryszkowska J; Woźniak P; Kurzydłowski KJ; Lewandowska-Szumieł M
    Acta Biomater; 2010 Jul; 6(7):2501-10. PubMed ID: 19723595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.