BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33747674)

  • 1. Automatic Count of Bites and Chews From Videos of Eating Episodes.
    Hossain D; Ghosh T; Sazonov E
    IEEE Access; 2020; 8():101934-101945. PubMed ID: 33747674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rule-based systems to automatically count bites from meal videos.
    Tufano M; Lasschuijt MP; Chauhan A; Feskens EJM; Camps G
    Front Nutr; 2024; 11():1343868. PubMed ID: 38826582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Masticatory Behaviors Measured With Wearable Device on Metabolic Syndrome: Cross-sectional Study.
    Uehara F; Hori K; Hasegawa Y; Yoshimura S; Hori S; Kitamura M; Akazawa K; Ono T
    JMIR Mhealth Uhealth; 2022 Mar; 10(3):e30789. PubMed ID: 35184033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Deep Learning System for the Full Automation of Bite and Meal Duration Analysis of Experimental Meal Videos.
    Konstantinidis D; Dimitropoulos K; Langlet B; Daras P; Ioakimidis I
    Nutrients; 2020 Jan; 12(1):. PubMed ID: 31941145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing Eating Behavior from Video Analysis: A Systematic Review.
    Tufano M; Lasschuijt M; Chauhan A; Feskens EJM; Camps G
    Nutrients; 2022 Nov; 14(22):. PubMed ID: 36432533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Measurement of Chew Count and Chewing Rate during Food Intake.
    Farooq M; Sazonov E
    Electronics (Basel); 2016; 5(4):. PubMed ID: 29082036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A description of an 'obesogenic' eating style that promotes higher energy intake and is associated with greater adiposity in 4.5year-old children: Results from the GUSTO cohort.
    Fogel A; Goh AT; Fries LR; Sadananthan SA; Velan SS; Michael N; Tint MT; Fortier MV; Chan MJ; Toh JY; Chong YS; Tan KH; Yap F; Shek LP; Meaney MJ; Broekman BFP; Lee YS; Godfrey KM; Chong MFF; Forde CG
    Physiol Behav; 2017 Jul; 176():107-116. PubMed ID: 28213204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Bite Count Feedback from a Wearable Device and Goal Setting on Consumption in Young Adults.
    Jasper PW; James MT; Hoover AW; Muth ER
    J Acad Nutr Diet; 2016 Nov; 116(11):1785-1793. PubMed ID: 27346460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation.
    Forde CG; van Kuijk N; Thaler T; de Graaf C; Martin N
    Appetite; 2013 Jan; 60(1):208-219. PubMed ID: 23017464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counting Bites and Recognizing Consumed Food from Videos for Passive Dietary Monitoring.
    Qiu J; Lo FP; Jiang S; Tsai YY; Sun Y; Lo B
    IEEE J Biomed Health Inform; 2021 May; 25(5):1471-1482. PubMed ID: 32897866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased chewing reduces energy intake, but not postprandial glucose and insulin, in healthy weight and overweight young adults.
    Borvornparadorn M; Sapampai V; Champakerdsap C; Kurupakorn W; Sapwarobol S
    Nutr Diet; 2019 Feb; 76(1):89-94. PubMed ID: 29767425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation and validation of an automatic jaw movement recorder (RumiWatch) for ingestive and rumination behaviors of dairy cows during grazing and supplementation.
    Rombach M; Münger A; Niederhauser J; Südekum KH; Schori F
    J Dairy Sci; 2018 Mar; 101(3):2463-2475. PubMed ID: 29290426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "Smart Dining Table": Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer.
    Manton S; Magerowski G; Patriarca L; Alonso-Alonso M
    Front Psychol; 2016; 7():142. PubMed ID: 26903934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between mouthful volume and number of chews in young Japanese females.
    Nakamichi A; Matsuyama M; Ichikawa T
    Appetite; 2014 Dec; 83():327-332. PubMed ID: 25131904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the Consumption of Individual Solid and Liquid Bites Using a Table-Embedded Scale During Unrestricted Eating.
    Mattfeld RS; Muth ER; Hoover A
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1711-1718. PubMed ID: 27898385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masticatory Behavior Change with a Wearable Chewing Counter: A Randomized Controlled Trial.
    Hori S; Hori K; Yoshimura S; Uehara F; Sato N; Hasegawa Y; Akazawa K; Ono T
    J Dent Res; 2023 Jan; 102(1):21-27. PubMed ID: 36085580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative testing of piezoelectric and printed strain sensors in characterization of chewing.
    Farooq M; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7538-41. PubMed ID: 26738036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy intake estimation from counts of chews and swallows.
    Fontana JM; Higgins JA; Schuckers SC; Bellisle F; Pan Z; Melanson EL; Neuman MR; Sazonov E
    Appetite; 2015 Feb; 85():14-21. PubMed ID: 25447016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Child meal microstructure and eating behaviors: A systematic review.
    Pearce AL; Cevallos MC; Romano O; Daoud E; Keller KL
    Appetite; 2022 Jan; 168():105752. PubMed ID: 34662600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic identification and analysis of multi-object cattle rumination based on computer vision.
    Wang Y; Chen T; Li B; Li Q
    J Anim Sci Technol; 2023 May; 65(3):519-534. PubMed ID: 37332285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.